日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀材料,解答問題.
          已知:銳角△ABC,如圖,求作:正方形DEFG,使D、E落在BC邊上,F(xiàn)、G分別落在AC、AB邊上.
          作法:(1)畫一個(gè)有三個(gè)頂點(diǎn)落在△ABC兩邊上的正方形D1、E1、F1、G1(如圖所示);
          (2)連接BF,并延長交AC于點(diǎn)F;
          (3)過點(diǎn)F作EF⊥BC于點(diǎn)E;
          (4)過F作FG∥BC,交AB于點(diǎn)G;
          (5)過點(diǎn)G作GD⊥BC于點(diǎn)D;則四邊形DEFG即為所求作的正方形.
          問題:(1)說明上述所求作四邊形DEFG為正方形的理由.
          (2)在△ABC中,如果BC=120,BC邊上的高為80,求上述正方形DEFG的邊長.
          (3)若把(2)中的正方形DEFG改為矩形DEFG,且GF=
          12
          DG,其他條件不變,此時(shí),GF是多少?
          分析:(1)由EF⊥BC,GD⊥BC,F(xiàn)G∥BC,易得四邊形DEFG是矩形,然后由四邊形D1E1F1G1是正方形,可得
          F1G1
          FG
          =
          BF1
          BF
          =
          E1F1
          EF
          ,則可得FG=EF,即可證得四邊形DEFG為正方形;
          (2)過點(diǎn)A作AM⊥BC于M,交FG于N,由四邊形DEFG為正方形,可得△AGF∽△ABC,根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比,設(shè)正方形DEFG的邊長為x,即可得方程
          80-x
          80
          =
          x
          120
          ,解此方程即可求得答案;
          (3)過點(diǎn)A作AM⊥BC于M,交FG于N,由四邊形DEFG為矩形,可得△AGF∽△ABC,根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比,設(shè)GF=x,則DG=2x,即可得方程
          80-2x
          80
          =
          x
          120
          ,解此方程即可求得答案.
          解答:解:(1)證明:∵EF⊥BC,GD⊥BC,
          ∴∠FED=∠EDG=90°,
          ∵FG∥BC,
          ∴∠EFG=180°-∠FED=90°,
          ∴四邊形DEFG是矩形,
          ∵四邊形D1E1F1G1是正方形,
          ∴E1F1=F1G1,F(xiàn)1G1∥BC,
          F1G1
          FG
          =
          BF1
          BF
          =
          E1F1
          EF

          ∴FG=EF,
          ∴四邊形DEFG為正方形;

          (2)過點(diǎn)A作AM⊥BC于M,交FG于N,
          ∵四邊形DEFG為正方形,
          ∴FG∥BC,
          ∴AN⊥GF,△AGF∽△ABC,
          AN
          AM
          =
          FG
          BC

          設(shè)正方形DEFG的邊長為x,
          則AM=80,AN=80-x,
          80-x
          80
          =
          x
          120
          ,
          解得:x=48,
          ∴正方形DEFG的邊長為48;

          (3)過點(diǎn)A作AM⊥BC于M,交FG于N,
          ∵四邊形DEFG為矩形,
          ∴FG∥BC,
          ∴AN⊥GF,△AGF∽△ABC,
          AN
          AM
          =
          FG
          BC
          ,
          ∵GF=
          1
          2
          DG,
          設(shè)GF=x,則DG=2x,AM=80,AN=AM=MN=AM-DG=80-2x,
          80-2x
          80
          =
          x
          120

          解得:x=30,
          ∴GF=30.
          點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的判定與性質(zhì)、矩形的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度較大,解題時(shí)注意數(shù)形結(jié)合思想與方程思想的應(yīng)用,注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          24、閱讀材料,解答問題.
          例.用圖象法解一元二次不等式:x2-2x-3>0.
          解:設(shè)y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
          又∵當(dāng)y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3.∴由此得拋物線y=x2-2x-3的大致圖象如圖所示.觀察函數(shù)圖象可知:當(dāng)x<-1或x>3時(shí),y>0.∴x2-2x-3>0的解集是:x<-1或x>3.
          (1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是
          -1<x<3
          ;
          (2)仿照上例,用圖象法解一元二次不等式:x2-5x+6<0.(畫出大致圖象).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          25、閱讀材料并解答問題:
          我們已經(jīng)知道,完全平方公式可以用平面幾何圖形的面積來表示,實(shí)際上還有一些代數(shù)等式也可以用這種形式表示.例如:(2a+b)(a+b)=2a2+3ab+b2就可以用圖①或圖②等圖形的面積來表示

          (1)請(qǐng)寫出圖③所表示的等式:
          (2a+b)(a+2b)=2a2+5ab+2b2

          (2)如圖所示的長方形或正方形三類卡片各有若干張,請(qǐng)你用這些卡片,拼成一個(gè)長方形或正方形圖形.要求:所拼圖形中每類卡片都要有,卡片之間不能重疊,畫出示意圖,并寫出你發(fā)現(xiàn)的等式.(請(qǐng)仿照上圖在幾何圖形上標(biāo)出有關(guān)數(shù)量).

          你發(fā)現(xiàn)的等式是
          (a+b)(a+b)=a2+2ab+b2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          27、閱讀材料并解答問題:

          如圖①,將6個(gè)小長方形(或正方形)既無空隙,又不重疊地拼成一個(gè)大的長方形,根據(jù)圖示尺寸,它的面積既可以表示為(2a+b)(a+b),又可以表示為2a2+3ab+b2,因此,我們可以得到一個(gè)等式:(2a+b)(a+b)=2a2+3ab+b2
          (1)請(qǐng)寫出圖②所表示的等式:
          (a+2b)(2a+b)=2a2+5ab+2b2

          (2)試畫出一個(gè)幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2(請(qǐng)仿照?qǐng)D①或圖②在幾何圖形上標(biāo)出有關(guān)數(shù)量).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀材料,解答問題:為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個(gè)整體,然后設(shè)x2-1=y原方程可化為y2-5y+4=0,解此方程得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x=±
          2
          ;當(dāng)y=4時(shí),x2-1=4,∴x=±
          5
          ,∴原方程的解為x1=
          2
          ,x2=-
          2
          ,x3=
          5
          ,x4=-
          5

          (1)填空:在原方程得到方程y2-5y+4=0的過程中,利用了
          換元
          換元
          法達(dá)到了降次的目的,體現(xiàn)了
          轉(zhuǎn)化
          轉(zhuǎn)化
          的數(shù)學(xué)思想
          (2)解方程:(x2-x)2-8(x2-x)+12=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀材料,解答問題:
          在數(shù)學(xué)課上,李老師和同學(xué)們一起探討角平分線的作法時(shí),李老師用直尺和圓規(guī)作角的平分線,作法如下:
          ①如圖1,在OA和OB上分別截取OD、OE,使OD=OE;
          ②分別以D、E為圓心,以大于
          12
          DE
          的長為半徑作弧,兩弧交于點(diǎn)C;
          ③作射線OC,則OC就是∠AOB的平分線.

          小聰只帶了直角三角板,他發(fā)現(xiàn)利用三角板也可以作角平分線,作法如下:
          ①如圖2,利用三角板上的刻度,在OA和OB上
          分別畫點(diǎn)M、N,使OM=ON;
          ②分別過點(diǎn)M、N作OM、ON的垂線,交于點(diǎn)P;
          ③作射線OP,則OP就是∠AOB的平分線.
          小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.
          請(qǐng)你按要求完成下列問題:
          (1)李老師用尺規(guī)作角平分線時(shí),用到的三角形全等的方法是
          “SSS”
          “SSS”

          (2)小聰?shù)淖鞣ㄕ_嗎?請(qǐng)說明理由.
          (3)請(qǐng)你幫小穎設(shè)計(jì)用刻度尺作角平分線的方法(要求:畫出圖形,并簡述過程和理由)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案