日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面坐標(biāo)系中,直線y=-x+2與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,動(dòng)點(diǎn)P(a,b)在第一象限內(nèi),由點(diǎn)P向x軸,y軸所作的垂線PM,PN(垂足為M,N)分別與直線AB相交于點(diǎn)E,點(diǎn)F,當(dāng)點(diǎn)P(a,b)運(yùn)動(dòng)時(shí),矩形PMON的面積為定值2.
          (1)求∠OAB的度數(shù);
          (2)求證:△AOF∽△BEO;
          (3)當(dāng)點(diǎn)E,F(xiàn)都在線段AB上時(shí),由三條線段AE,EF,BF組成一個(gè)三角形,記此三角形的外接圓面積為S1,△OEF的面積為S2.試探究:S1+S2是否存在最小值?若存在,請(qǐng)求出該最小值;若不存在,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)當(dāng)x=0或y=0時(shí)分別可以求出y的值和x的值就可以求出OA與OB的值,從而就可以得出結(jié)論;
          (2)根據(jù)平行線的性質(zhì)可以得出,,就可以得出.再由∠OAF=∠EBO=45°就可以得出結(jié)論;
          (3)先根據(jù)E、F的坐標(biāo)表示出相應(yīng)的線段,根據(jù)勾股定理求出線段AE、EF、BF組成的三角形為直角三角形,且EF為斜邊,則可以表示此三角形的外接圓的面積S1,再由梯形的面積公式和三角形的面積公式就可以表示出S2,就可以表示出和的解析式,再由如此函數(shù)的性質(zhì)就可以求出最值.
          解答:解:(1)∵直線y=-x+2,∴當(dāng)x=0時(shí),y=2,B(0,2),
          當(dāng)y=0時(shí),x=2,A(2,0)∴OA=OB=2.
          ∵∠AOB=90°
          ∴∠OAB=45°;

          (2)∵四邊形OMPN是矩形,
          ∴PM∥ON,NP∥OM,
          ,,
          ∴BE=OM,AF=ON,
          ∴BE•AF=OM•ON=2OM•ON.
          ∵矩形PMON的面積為2,
          ∴OM•ON=2
          ∴BE•AF=4.
          ∵OA=OB=2,
          ∴OA•OB=4,
          ∴BE•AF=OA•OB,

          ∵∠OAF=∠EBO=45°,
          ∴△AOF∽△BEO;

          (3)∵四邊形OAPN是矩形,∠OAF=∠EBO=45°,
          ∴△AME、△BNF、△PEF為等腰直角三角形.
          ∵E點(diǎn)的橫坐標(biāo)為a,E(a,2-a),
          ∴AM=EM=2-a,
          ∴AE2=2(2-a)2=2a2-8a+8.
          ∵F的縱坐標(biāo)為b,F(xiàn)(2-b,b)
          ∴BN=FN=2-b,
          ∴BF2=2(2-b)2=2b2-8b+8.
          ∴PF=PE=a+b-2,
          ∴EF2=2(a+b-2)2=2a2+4ab+2b2-8a-8b+8.
          ∵ab=2,
          ∴EF2=2a2+2b2-8a-8b+16
          ∴EF2=AE2+BF2
          ∴線段AE、EF、BF組成的三角形為直角三角形,且EF為斜邊,則此三角形的外接圓的面積為
          S1=EF2=•2(a+b-2)2=(a+b-2)2
          ∵S梯形OMPF=(PF+ON)•PM,S△PEF=PF•PE,S△OME=OM•EM,
          ∴S2=S梯形OMPF-S△PEF-S△OME,
          =(PF+ON)•PM-PF•PE-OM•EM,
          =[PF(PM-PE)+OM(PM-EM)],
          =(PF•EM+OM•PE),
          =PE(EM+OM),
          =(a+b-2)(2-a+a),
          =a+b-2.
          ∴S1+S2=(a+b-2)2+a+b-2.
          設(shè)m=a+b-2,則S1+S2=m2+m=(m+2-,
          ∵面積不可能為負(fù)數(shù),
          ∴當(dāng)m>-時(shí),S1+S2隨m的增大而增大.
          當(dāng)m最小時(shí),S1+S2最。
          ∵m=a+b-2=a+-2=(-2+2-2,
          ∴當(dāng)=,即a=b=時(shí),m最小,最小值為2-2
          ∴S1+S2的最小值=(2-2)2+2-2,
          =2(3-2)π+2-2.
          點(diǎn)評(píng):本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,勾股定理及勾股定理的逆定理的運(yùn)用,梯形的面積公式的運(yùn)用,圓的面積公式的運(yùn)用,三角形的面積公式的運(yùn)用二次函數(shù)的頂點(diǎn)式的運(yùn)用,在解答時(shí)運(yùn)用二次函數(shù)的頂點(diǎn)式求最值是關(guān)鍵和難點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          16、如圖,在平面坐標(biāo)系中,ABCO為正方形,已知點(diǎn)B的坐標(biāo)為(4,4),點(diǎn)P的坐標(biāo)為(3,3),當(dāng)三角板直角頂點(diǎn)與P重合時(shí),一條直角邊與x軸交于點(diǎn)E,另一條直角邊與y軸交于點(diǎn)F,在三角板繞點(diǎn)P旋轉(zhuǎn)過(guò)程中,若△POE為等腰三角形,則點(diǎn)F的坐標(biāo)為
          (0,3)或(0,0)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面坐標(biāo)系中有一正三角形ABC,A(-8,0)、B(8,0),直線l經(jīng)過(guò)原點(diǎn)O及BC的中點(diǎn)D,另一動(dòng)直線a平行于y軸,從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右平移,直線a分別交線段BC、直線l于點(diǎn)E、F,以EF為邊向左側(cè)作等邊△EFG,設(shè)△EFG與△ABC重疊部分的面積為S(平方單位),當(dāng)點(diǎn)G落在y軸上時(shí),a停止運(yùn)動(dòng),設(shè)直線a的運(yùn)動(dòng)時(shí)間為t(秒).
          (1)直接寫(xiě)出:C點(diǎn)坐標(biāo)
           
          ,直線l的解析式:
           

          (2)請(qǐng)用含t的代數(shù)式表示線段EF;
          (3)求出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•長(zhǎng)沙)如圖,在平面坐標(biāo)系中,直線y=-x+2與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,動(dòng)點(diǎn)P(a,b)在第一象限內(nèi),由點(diǎn)P向x軸,y軸所作的垂線PM,PN(垂足為M,N)分別與直線AB相交于點(diǎn)E,點(diǎn)F,當(dāng)點(diǎn)P(a,b)運(yùn)動(dòng)時(shí),矩形PMON的面積為定值2.
          (1)求∠OAB的度數(shù);
          (2)求證:△AOF∽△BEO;
          (3)當(dāng)點(diǎn)E,F(xiàn)都在線段AB上時(shí),由三條線段AE,EF,BF組成一個(gè)三角形,記此三角形的外接圓面積為S1,△OEF的面積為S2.試探究:S1+S2是否存在最小值?若存在,請(qǐng)求出該最小值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面坐標(biāo)系中,A(a,0),B(0,b),且a,b滿足(a-4)2+
          b+4
          =0,點(diǎn)C,B關(guān)于x軸對(duì)稱.
          (1)求A、C兩點(diǎn)坐標(biāo);
          (2)點(diǎn)M為射線OA上A點(diǎn)右側(cè)一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN⊥CM交直線AB于N,連BM,是否存在點(diǎn)M,使S△AMN=
          3
          2
          S△AMB
          ?若存在,求M點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在平面坐標(biāo)系中有一正三角形ABC,A(-8,0)、B(8,0),直線l經(jīng)過(guò)原點(diǎn)O及BC的中點(diǎn)D,另一動(dòng)直線a平行于y軸,從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右平移,直線a分別交線段BC、直線l于點(diǎn)E、F,以EF為邊向左側(cè)作等邊△EFG,設(shè)△EFG與△ABC重疊部分的面積為S(平方單位),當(dāng)點(diǎn)G落在y軸上時(shí),a停止運(yùn)動(dòng),設(shè)直線a的運(yùn)動(dòng)時(shí)間為t(秒).
          (1)直接寫(xiě)出:C點(diǎn)坐標(biāo)________,直線l的解析式:________.
          (2)請(qǐng)用含t的代數(shù)式表示線段EF;
          (3)求出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案