日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,延長(zhǎng)BA到點(diǎn)D,使AD=AO,連接DO,若BD=BC,∠ABC=54°,則∠BCA的度數(shù)為°.

          【答案】42
          【解析】解:∵△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O, ∴∠ABO=∠CBO,∠BAO=∠CAO,∠BCO=∠ACO,
          ∵AD=A0,
          ∴∠D=∠AOD,
          ∴∠BAO=2∠D,
          設(shè)∠D=α,
          則∠BAO=2α,∠BAC=4α,
          在△DBO與△CBO中,
          ∴△DBO≌△CBO,
          ∴∠BCO=∠D=α,
          ∴∠BCA=2α,
          ∴54+4α+2α=180,
          ∴α=21,
          ∴∠BCA=42°,
          故答案為:42.
          由△ABC三個(gè)內(nèi)角的平分線得到角相等,關(guān)鍵等腰三角形的性質(zhì)得到∠D=∠AOD,由外角的性質(zhì)得到∠BAC=4∠D,由△DBO≌△CBO,得到∠BOC=∠D=α,
          ∠BCA=2α,根據(jù)三角形的內(nèi)角和列方程求得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖在長(zhǎng)方形ABCD中,AB=12cm,BC=8cm,點(diǎn)PA點(diǎn)出發(fā),沿A→B→C→D路線運(yùn)動(dòng),到D點(diǎn)停止;點(diǎn)QD點(diǎn)出發(fā),沿D→C→B→A運(yùn)動(dòng),到A點(diǎn)停止.若點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒2cm,用x(秒)表示運(yùn)動(dòng)時(shí)間.

          (1)求點(diǎn)P和點(diǎn)Q相遇時(shí)的x值.

          (2)連接PQ,當(dāng)PQ平分矩形ABCD的面積時(shí),求運(yùn)動(dòng)時(shí)間x值.

          (3)若點(diǎn)P、點(diǎn)Q運(yùn)動(dòng)到6秒時(shí)同時(shí)改變速度,點(diǎn)P的速度變?yōu)槊棵?/span>3cm,點(diǎn)Q的速度為每秒1cm,求在整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)P、點(diǎn)Q在運(yùn)動(dòng)路線上相距路程為20cm時(shí)運(yùn)動(dòng)時(shí)間x值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是(
          A.70°
          B.35°
          C.40°
          D.50°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

          1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

          2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

          3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過(guò)多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有三個(gè)有理數(shù)a,b,c,已知a=,(n為正整數(shù))且a與b互為相反數(shù),b與c互為倒數(shù).

          (1)當(dāng)n為奇數(shù)時(shí)你能求出a,b,c各是幾嗎?

          (2)當(dāng)n為偶數(shù)時(shí),你能求a,b,c三數(shù)嗎?若能請(qǐng)算出結(jié)果,不能請(qǐng)說(shuō)明理由.

          (3)根據(jù)(1)中的結(jié)論,求:ab﹣b﹣(b﹣c)2015的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】化簡(jiǎn)計(jì)算
          (1)解不等式組 ;
          (2)先化簡(jiǎn),再求值: ÷(a﹣1﹣ ),其中a是方程x2+x=6的一個(gè)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某單位在五月份準(zhǔn)備組織部分員工到北京旅游,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報(bào)價(jià)均為3000/人,兩家旅行社同時(shí)都對(duì)10人以上的團(tuán)體推出了優(yōu)惠舉措;甲旅行社對(duì)每位員工七五折優(yōu)惠,而乙旅行社是免去一位帶隊(duì)管理員工的費(fèi)用,其余員工八折優(yōu)惠.

          (1)如果設(shè)參加旅游的員工共有a(a>10人),則甲旅行社的費(fèi)用為   元,乙旅行社的費(fèi)用為   元;(用含a的代數(shù)式表示,并化簡(jiǎn))

          (2)如果計(jì)劃在五月份外出旅游七天,設(shè)最中間一天的日期為x,則這七天的日期之和為   .(用含x的代數(shù)式表示,并化簡(jiǎn))

          (3)在(2)的條件下,假如這七天的日期之和為49的倍數(shù),則他們可能于五月幾號(hào)出發(fā)?(寫出所有符合條件的可能性,并寫出簡(jiǎn)單的計(jì)算過(guò)程)

          (4)假如這個(gè)單位現(xiàn)組織包括管理員工在內(nèi)的共20名員工到北京旅游,該單位選擇哪一家旅行社比較優(yōu)惠?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE△BCF, 則下列結(jié)論:

          ①△EBF≌△DFC

          四邊形AEFD為平行四邊形;

          當(dāng)AB=AC∠BAC=1200時(shí),四邊形AEFD是正方形.

          其中正確的結(jié)論是 .(請(qǐng)寫出正確結(jié)論的番號(hào)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正方形ABCD的邊長(zhǎng)為2,過(guò)點(diǎn)A作射線AM與線段BD交于點(diǎn)M,BAM=α(0°<α<90°),作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN.

          (1)如圖,當(dāng)0°<α<45°時(shí),

          依題意在圖中補(bǔ)全圖并證明:AM=CN 當(dāng)BDCN,求DM的值

          (2)探究NCEBAM之間的數(shù)量關(guān)系并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案