日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知在正方形ABCD中,P為BC上的一點(diǎn),E是邊BC延長線上一點(diǎn),連接AP過點(diǎn)P作PF⊥精英家教網(wǎng)AP,與∠DCE的平分線CF,相交于點(diǎn)F,連接AF,與邊CD相交于點(diǎn)G,連接PG.
          (1)求證:①∠PAB=∠FPC;②AP=FP;
          (2)試判斷PB、DG、PC,這三條線段存在怎樣的數(shù)量關(guān)系,并說明理由.
          分析:(1)①根據(jù)已知條件,由同一個(gè)角的余角相等求證.
          ②過F作FM⊥BC交延長線于M,根據(jù)線段之間的關(guān)系,證明△ABP≌△PMF,進(jìn)而求證AP=FP.
          (2)過F作MN平行于CD,交CE、AD的延長線于點(diǎn)M、N,根據(jù)平行線的性質(zhì),結(jié)合線段之間的關(guān)系,列方程求解.
          解答:精英家教網(wǎng)解:(1)①∵正方形ABCD,
          ∴∠B=90°,即∠BAP+∠APB=90°,
          ∵PF⊥AP,
          ∴∠APB+∠EPC=90°,
          ∴∠PAB=∠FPC.
          ②如圖作FM⊥BC,交延長線與點(diǎn)M.
          設(shè)AB=a,F(xiàn)M=b,BP=x,
          則CP=a-x,
          ∵CF平分DCE,
          ∴CM=FM=b,
          ∴PM=a-x+b,
          ∵∠PAB=∠FPC,
          ∴△ABP∽△PMF,
          AB
          PM
          =
          BP
          FM
          ,
          a
          a-x+b
          =
          x
          b

          a-x
          a-x+b-b
          =
          x
          b
          =1,
          ∴x=b,即FM=BP,
          ∴△ABP≌△PMF,
          ∴AP=FP.

          (2)
          DG
          PC
          =
          BP+PC
          2BP+PC
          精英家教網(wǎng)
          證明:如圖,過F作MN平行于CD,交CE、AD的延長線于點(diǎn)M、N,得到矩形CMND,
          DG
          NF
          =
          AD
          AN

          由(1)②中得出FM=BP=CM=DN,
          ∵BC=MN,BP=FM,
          ∴PC=NF,
          DG
          PC
          =
          BP+PC
          2BP+PC
          點(diǎn)評(píng):①本題考查了正方形的性質(zhì),結(jié)合了三角形全等的判定,屬于綜合性比較強(qiáng)的題目,要求有比較扎實(shí)的基礎(chǔ).
          ②(2)涉及到探究性試題,解決本類試題要先求解,然后給出結(jié)論,再進(jìn)行證明.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          18、如圖,已知在正方形ABCD中,P是BC上的一點(diǎn),且AP=DP.求證:P是BC中點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在正方形ABCD中,AB=2,P是邊BC上的任意一點(diǎn),E是邊BC延長線上精英家教網(wǎng)一點(diǎn),連接AP.過點(diǎn)P作PF⊥AP,與∠DCE的平分線CF相交于點(diǎn)F.連接AF,與邊CD相交于點(diǎn)G,連接PG.
          (1)求證:AP=FP;
          (2)⊙P、⊙G的半徑分別是PB和GD,試判斷⊙P與⊙G兩圓的位置關(guān)系,并說明理由;
          (3)當(dāng)BP取何值時(shí),PG∥CF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
          6
          .下列結(jié)論:
          ①△APD≌△AEB﹔②點(diǎn)B到直線AE的距離為
          3
          ﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
          2

          其中正確結(jié)論的序號(hào)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•倉山區(qū)模擬)如圖,已知在正方形ABCD網(wǎng)格中,每個(gè)小方格都是邊長為1的正方形,E是邊DC上的一個(gè)網(wǎng)格的格點(diǎn).
          (1)
          DE
          EB
          的值是
          1
          5
          1
          5
          ;
          (2)按要求畫圖:在BC邊長找出格點(diǎn)F,連接AF,使AF⊥BE;
          (3)在(2)的條件下,連接EF,求cos∠AFE的值.(結(jié)果保留根式)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•鄭州模擬)如圖,已知在正方形ABCD中,EF分別是AB,BC上的點(diǎn),若有AE+CF=EF,請你猜想∠EDF的度數(shù),并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案