日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,點F在邊BC上,且AFAD,過點DDEAF,垂足為點E

          1)求證:DEAB

          2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BFFC1,求扇形ABG的面積.(結(jié)果保留π

          【答案】1)證明見解析;(2.

          【解析】

          1)根據(jù)矩形的性質(zhì)得出∠B=90°,AD=BC,ADBC,求出∠DAE=AFB,∠AED=90°=B,根據(jù)AAS推出ABF≌△DEA即可;
          2)根據(jù)勾股定理求出AB,解直角三角形求出∠BAF,根據(jù)全等三角形的性質(zhì)得出DE=AB=,∠BAF=30°,根據(jù)扇形的面積公式求出即可.

          1)∵四邊形ABCD是矩形,

          ∴∠B90°,ADBC,ADBC,

          ∴∠DAE=∠AFB,

          DEAF

          ∴∠AED90°=∠B,

          ABFDEA

          ∴△ABF≌△DEAAAS),

          DEAB;

          2)∵BFFC1

          BCBF+FC=2

          由(1)得:ABF≌△DEA

          ADAF

          BCAD,

          AF BC=2,

          BF1,∠ABF90°,

          ∴由勾股定理得:AB

          sinBAF,

          ∴∠BAF30°

          ∴扇形ABG的面積=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】.某商場為緩解停車難問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設(shè)計示意圖,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小明和小亮誰說得對?請你判斷并計算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A6,0),B6,3),畫出ABO的所有以原點O為位似中心的CDO,且CDOABO的相似比為13,并寫出C、D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB90°,以BC為直徑作圓,交斜邊AB于點E,DAC的中點.連接DO,DE.則下列結(jié)論中不一定正確的是(  )

          A. DOABB. ADE是等腰三角形

          C. DEACD. DE是⊙O的切線

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CAD,EOD=ODA,

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若平面直角坐標(biāo)系內(nèi)的點M滿足橫、縱坐標(biāo)都為整數(shù),則把點M叫做整點.例如:P(1,0)、Q(2,﹣2)都是整點.拋物線ymx24mx+4m-2(m0)x軸交于點A、B兩點,若該拋物線在AB之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( )

          A. <m≤1B. ≤m<1C. 1<m≤2D. 1<m<2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三角形紙片ABC中,AB=6BC=8,AC=4.沿虛線剪下的涂色部分的三角形與ABC相似的是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,圖是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖的底邊剪去一塊邊長 的等邊三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的 )后,得圖,,記第nn≥3)塊紙板的周長為Pn,則Pn-Pn-1=_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將△OABO點逆時針旋轉(zhuǎn)60°得到△OCD,若OA4,∠AOB35°,則下列結(jié)論錯誤的是(  )

          A. BDO60° B. BOC25° C. OC4 D. BD4

          查看答案和解析>>

          同步練習(xí)冊答案