日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

          (1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
          (2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;
          (3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          【答案】
          (1)

          解:令y=0,解得x1=﹣1或x2=3

          ∴A(﹣1,0)B(3,0)

          將C點(diǎn)的橫坐標(biāo)x=2代入y=x2﹣2x﹣3得y=﹣3

          ∴C(2,﹣3)

          ∴直線AC的函數(shù)解析式是y=﹣x﹣1


          (2)

          解:設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤2)

          則P、E的坐標(biāo)分別為:P(x,﹣x﹣1)

          E(x,x2﹣2x﹣3)

          ∵P點(diǎn)在E點(diǎn)的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣ 2+ ,

          ∴當(dāng) 時(shí),PE的最大值=


          (3)

          解:存在4個(gè)這樣的點(diǎn)F,分別是F1(1,0),F(xiàn)2(﹣3,0),F(xiàn)3(4+ ,0),F(xiàn)4(4﹣ ,0).

          ①如圖,連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時(shí)AF=CG=2,因此F點(diǎn)的坐標(biāo)是(﹣3,0);

          ②如圖,AF=CG=2,A點(diǎn)的坐標(biāo)為(﹣1,0),因此F點(diǎn)的坐標(biāo)為(1,0);

          ③如圖,此時(shí)C,G兩點(diǎn)的縱坐標(biāo)互為相反數(shù),因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+ ,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=﹣x+h,將G點(diǎn)代入后可得出直線的解析式為y=﹣x+4+ .因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+ ,0);

          ④如圖,同③可求出F的坐標(biāo)為(4﹣ ,0).

          綜合四種情況可得出,存在4個(gè)符合條件的F點(diǎn)


          【解析】(1)因?yàn)閽佄锞與x軸相交,所以可令y=0,解出A、B的坐標(biāo).再根據(jù)C點(diǎn)在拋物線上,C點(diǎn)的橫坐標(biāo)為2,代入拋物線中即可得出C點(diǎn)的坐標(biāo).再根據(jù)兩點(diǎn)式方程即可解出AC的函數(shù)表達(dá)式;(2)根據(jù)P點(diǎn)在AC上可設(shè)出P點(diǎn)的坐標(biāo).E點(diǎn)坐標(biāo)可根據(jù)已知的拋物線求得.因?yàn)镻E都在垂直于x軸的直線上,所以兩點(diǎn)之間的距離為yp﹣yE , 列出方程后結(jié)合二次函數(shù)的性質(zhì)即可得出答案;(3)存在四個(gè)這樣的點(diǎn).①連接C與拋物線和y軸的交點(diǎn),那么CG∥x軸,此時(shí)AF=CG=2,因此F點(diǎn)的坐標(biāo)是(﹣3,0);②AF=CG=2,A點(diǎn)的坐標(biāo)為(﹣1,0),因此F點(diǎn)的坐標(biāo)為(1,0);③此時(shí)C,G兩點(diǎn)的縱坐標(biāo)關(guān)于x軸對(duì)稱,因此G點(diǎn)的縱坐標(biāo)為3,代入拋物線中即可得出G點(diǎn)的坐標(biāo)為(1+ ,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=﹣x+h,將G點(diǎn)代入后可得出直線的解析式為y=﹣x+7.因此直線GF與x軸的交點(diǎn)F的坐標(biāo)為(4+ ,0);④如圖,同③可求出F的坐標(biāo)為(4﹣ ,0);
          綜合四種情況可得出,存在4個(gè)符合條件的F點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩列火車分別從A,B兩城同時(shí)相向勻速駛出,甲車開(kāi)往終點(diǎn)B城,乙車開(kāi)往終點(diǎn)A城,乙車比甲車早到達(dá)終點(diǎn);如圖所示,是兩車相距的路程d(千米)與行駛時(shí)間t(小時(shí))的函數(shù)的圖象.
          (1)經(jīng)過(guò)小時(shí)兩車相遇;
          (2)A,B兩城相距千米路程;
          (3)分別求出甲、乙兩車的速度;
          (4)分別求出甲車距A城的路程s、乙車距A城的路程s與t的函數(shù)關(guān)系式;(不必寫出t的范圍)
          (5)當(dāng)兩車相距200千米路程時(shí),求t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P滿足SPAB= S矩形ABCD , 則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為( )

          A.
          B.
          C.5
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,某同學(xué)去該店購(gòu)買飲料,每種飲料被選中的可能性相同.
          (1)若他去買一瓶飲料,則他買到奶汁的概率是多少?
          (2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正比例函數(shù)y=ax與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)M( ).

          (1)求這兩個(gè)函數(shù)的表達(dá)式;
          (2)如圖1,若∠AMB=90°,且其兩邊分別于兩坐標(biāo)軸的正半軸交于點(diǎn)A、B.求四邊形OAMB的面積.
          (3)如圖2,點(diǎn)P是反比例函數(shù)y= (x>0)的圖象上一點(diǎn),過(guò)點(diǎn)P作x軸、y軸的垂線,垂足分別為E、F,PF交直線OM于點(diǎn)H,過(guò)作x軸的垂線,垂足為G.設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)m> 時(shí),是否存在點(diǎn)P,使得四邊形PEGH為正方形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一次函數(shù)y=kx+b的圖象與x、y軸分別交于點(diǎn)A(2,0),B(0,4).

          (1)求該函數(shù)的解析式;
          (2)O為坐標(biāo)原點(diǎn),設(shè)OA、AB的中點(diǎn)分別為C、D,P為OB上一動(dòng)點(diǎn),求PC+PD的最小值,并求取得最小值時(shí)P點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.

          (1)求證:△AEC≌△ADB;
          (2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,一個(gè)電子蜘蛛從點(diǎn)A出發(fā)勻速爬行,它先沿線段AB爬到點(diǎn)B,再沿半圓經(jīng)過(guò)點(diǎn)M爬到點(diǎn)C.如果準(zhǔn)備在M、N、P、Q四點(diǎn)中選定一點(diǎn)安裝一臺(tái)記錄儀,記錄電子蜘蛛爬行的全過(guò)程.設(shè)電子蜘蛛爬行的時(shí)間為x,電子蜘蛛與記錄儀之間的距離為y,表示y與x函數(shù)關(guān)系的圖象如圖2所示,那么記錄儀可能位于圖1中的( )

          A.點(diǎn)M
          B.點(diǎn)N
          C.點(diǎn)P
          D.點(diǎn)Q

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于Q,過(guò)Q的⊙O的切線交OA的延長(zhǎng)線于R.求證:RP=RQ.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案