日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).
          設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤(rùn)為元.
          (1)求的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
          (2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
          (3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?

          (1)(0<x≤15且x為整數(shù));(2)55或56,2400;
          (3),,不低于51元且不高于60元且為整數(shù).

          解析試題分析:(1)由銷售單價(jià)每漲1元,就會(huì)少售出10件,得
          (0<x≤15且x為整數(shù));
          (2)把進(jìn)行配方即可求出最大值,即最大利潤(rùn).
          (3)當(dāng)時(shí),,解得:,
          當(dāng)時(shí),,當(dāng)時(shí),
          當(dāng)售價(jià)定為每件51或60元,每個(gè)月的利潤(rùn)為2200元.
          試題解析:(1)為整數(shù));
          (2)
          ∵a=-10<0,
          ∴當(dāng)x=5.5時(shí),y有最大值2402.5.
          ∵0<x≤15且x為整數(shù),
          ∴當(dāng)x=5時(shí),50+x=55,y=2400(元),當(dāng)x=6時(shí),50+6=56,y=2400(元)
          ∴當(dāng)售價(jià)定為每件55或56元,每個(gè)月的利潤(rùn)最大,最大的月利潤(rùn)是2400元.
          (3)當(dāng)時(shí),,解得:,
          ∴當(dāng)時(shí),,當(dāng)時(shí),
          ∴當(dāng)售價(jià)定為每件51或60元,每個(gè)月的利潤(rùn)為2200元.
          ∴當(dāng)售價(jià)不低于51或60元,每個(gè)月的利潤(rùn)為2200元.
          ∴當(dāng)售價(jià)不低于51元且不高于60元且為整數(shù)時(shí),每個(gè)月的利潤(rùn)不低于2200元(或當(dāng)售價(jià)分別為51,52,53,54,55,56,57,58,59,60元時(shí),每個(gè)月的利潤(rùn)不低于2200元).
          考點(diǎn):1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:已知二次函數(shù)的圖象對(duì)稱軸為,且過(guò)點(diǎn)B(-1,0).求此二次函數(shù)的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

          (1)求拋物線的函數(shù)關(guān)系式;
          (2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo),并求出此時(shí)的周長(zhǎng);
          (3)在直線l上是否存在點(diǎn)M,使△MAC為直角三角形?若存在,請(qǐng)寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,拋物線與y軸交于點(diǎn)A,拋物線上的一點(diǎn)P在第四象限,連接AP與x軸交于點(diǎn)C,,且S△AOC=1,過(guò)點(diǎn)P作PB⊥y軸于點(diǎn)B.

          (1)求BP的長(zhǎng);
          (2)求拋物線與x軸的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn))。已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

          (1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
          (2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問(wèn)x應(yīng)取何值?S最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.
          (1)求w與x之間的函數(shù)關(guān)系式.
          (2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
          (3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線過(guò)兩點(diǎn)(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點(diǎn)為(1,d).
          (1)求拋物線與雙曲線的解析式;
          (2)已知點(diǎn)都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點(diǎn),記,點(diǎn)Q在雙曲線(x<0)上,過(guò)Q作QM⊥y軸于M,記。
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.

          (1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

          ①求拋物線的解析式;
          ②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?
          (2)如圖2,若把橋看做是圓的一部分.

          ①求圓的半徑;
          ②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(3,0),B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.

          (1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);
          (2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過(guò)A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案