日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿A→B→C向終點C運(yùn)動,連接DM交AC于點N.
          (1)如圖1,當(dāng)點M在AB邊上時,連接BN

          ①試說明:;
          ②若∠ABC=60°,AM=4,求點M到AD的距離.
          (2)如圖2,若∠ABC=90°,記點M運(yùn)動所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.
          (1)①見解析;②;(2)x為6或18-或12時,△ADN為等腰三角形.

          試題分析:(1)根據(jù)菱形的四條邊都相等可得AB=AD,對角線平分一組對角可得∠BAN=∠DAN,然后利用“邊角邊”證明;
          (2)根據(jù)有一個角是直角的菱形的正方形判斷出四邊形ABCD是正方形,再根據(jù)正方形的性質(zhì)點M與點B、C重合時△ADN是等腰三角形;AN=AD時,利用勾股定理列式求出AC,再求出CN,然后求出△ADN和△CMN相似,利用相似三角形對應(yīng)邊成比例列式求出CM,然后求出BM即可得解.
          試題解析:
          (1)證明:在菱形ABCD中,AB=AD,∠BAN=∠DAN,
          在△ABN和△ADN中,

          ∴△ABN≌△ADN(SAS);
          (2)∵∠ABC=90°,
          ∴菱形ABCD是正方形,
          ∴當(dāng)x=6時,點M與點B重合,AN=DN,△ADN為等腰三角形,
          當(dāng)x=12時,點M與點C重合,AD=DN,△ADN為等腰三角形,
          當(dāng)AN=AD時,在Rt△ACD中,
          CN=AC-AN=,
          ∵正方形ABCD的邊BC∥AD,
          ∴△ADN∽△CMN,

          ,
          解得CM=,
          ∴BM=BC-AM=6-()=12- ,
          x=AB+BM=6+12- =18- ,
          綜上所述,x為6或18-或12時,△ADN為等腰三角形.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在正方形網(wǎng)格上有△ABC和△DEF.

          (1)求證:△ABC∽△DEF;
          (2)計算這兩個三角形的周長比;
          (3)根據(jù)上面的計算結(jié)果,你有何猜想?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在YABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則SDEF:SABF=( 。
          A.2:3B.4:9C.2:5D.4:25

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.

          求證:(1)點F是DC上一點,連接EF,交AC于點O(如圖1),△AOE∽△COF;
          (2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。

          問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,

          拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          【探究發(fā)現(xiàn)】
          按圖中方式將大小不同的兩個正方形放在一起,分別求出陰影部分(⊿ACF)的面積。(單位:厘米,陰影部分的面積依次用S1、S2、S3表示)
          1.S1=          cm2;     S2=          cm2;          S3=          cm2.
          2.歸納總結(jié)你的發(fā)現(xiàn):

          【推理反思】
          按圖中方式將大小不同的兩個正方形放在一起,設(shè)小正方形的邊長是bcm,大正方形的邊長是acm,求:陰影部分(⊿ACF)的面積。

          【應(yīng)用拓展】
          1.按上圖方式將大小不同的兩個正方形放在一起,若大正方形的面積是80cm2,則圖中陰影三角形的面積是          cm2.
          2.如圖(1),C是線段AB上任意一點,分別以AC、BC為邊在線段AB同側(cè)構(gòu)造等邊三角形⊿ACD和等邊三角形⊿CBE,若⊿CBE的邊長是1cm,則圖中陰影三角形的面積是                        cm2.
          3.如圖(2),菱形ABCD和菱形ECGF的邊長分別為2和3,∠A=120°,則圖中陰影部分的面積是   

          (1)                      (2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,直線與x軸, y軸分別相交于A,B兩點,C為OB上一點,且,則S△ABC等于  (    )
          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)是三個互不相同的正數(shù),如果,那么( 。
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案