日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,邊長為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E是 上的一動(dòng)點(diǎn)(不與A、B重合),點(diǎn)F是 上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且∠EOF=90°,有以下結(jié)論: ① = ;
          ②△OGH是等腰三角形;
          ③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;
          ④△GBH周長的最小值為4+
          其中正確的是(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

          【答案】①②
          【解析】解:①如圖所示,
          ∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
          ∴∠BOE=∠COF,
          在△BOE與△COF中,
          ,
          ∴△BOE≌△COF,
          ∴BE=CF,
          = ,①正確;
          ②∵BE=CF,
          ∴△BOG≌△COH;
          ∵∠BOG=∠COH,∠COH+∠OBF=90°,
          ∴∠GOH=90°,OG=OH,
          ∴△OGH是等腰直角三角形,②正確.
          ③如圖所示,

          ∵△HOM≌△GON,
          ∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;
          ④∵△BOG≌△COH,
          ∴BG=CH,
          ∴BG+BH=BC=4,
          設(shè)BG=x,則BH=4﹣x,
          則GH= =
          ∴其最小值為4+2 ,D錯(cuò)誤.
          故答案為:①②.
          ①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到 = ,可以判斷①;
          ②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
          ③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
          ④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4﹣x,根據(jù)勾股定理得到GH= = ,可以求得其最小值,可以判斷④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“一方有難,八方支援”,雅安蘆山420地震后,某單位為一中學(xué)捐贈(zèng)了一批新桌椅,學(xué)校組織初一年級(jí)200名學(xué)生搬桌椅.規(guī)定一人一次搬兩把椅子,兩人一次搬一張桌子,每人限搬一次,最多可搬桌椅(一桌一椅為一套)的套數(shù)為(
          A.60
          B.70
          C.80
          D.90

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:( 2+(π﹣3.14)0﹣| |﹣2cos30°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知一次函數(shù)y= x+b的圖象與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,2)和點(diǎn)B,點(diǎn)C在y軸上.

          (1)當(dāng)△ABC的周長最小時(shí),求點(diǎn)C的坐標(biāo);
          (2)當(dāng) x+b< 時(shí),請直接寫出x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A和點(diǎn)B都在反比例函數(shù)y= 的圖象上,且線段AB過原點(diǎn),過點(diǎn)A作x軸的垂線段,垂足為C,P是線段OB上的動(dòng)點(diǎn),連接CP.設(shè)△ACP的面積為S,則下列說法正確的是(
          A.S>3
          B.S>6
          C.3≤S≤6
          D.3<S≤6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交與點(diǎn)A(﹣3,0),點(diǎn)B(9,0),與y軸交與點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動(dòng)點(diǎn).

          (1)求拋物線的解析式;
          (2)過點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
          (3)如圖2,拋物線對稱軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對稱的對稱點(diǎn),過點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,當(dāng)△PMN為等腰三角形時(shí),求此時(shí)EM的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線 與雙曲線 交于點(diǎn)A.將直線 向右平移6個(gè)單位后,與雙曲線 交于點(diǎn)B,與x軸交于點(diǎn)C,若 ,則k的值為(
          A.12
          B.14
          C.18
          D.24

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,C為 的中點(diǎn),若∠CBD=30°,⊙O的半徑為12.
          (1)求∠BAD的度數(shù);
          (2)求扇形OCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)興趣小組做了如下探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹梢頂點(diǎn)A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

          查看答案和解析>>

          同步練習(xí)冊答案