日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,在平面直角坐標系中,為原點,點坐標為,點坐標為,以為直徑的圓軸的負半軸交于點

          (1)求圖象經過,三點的拋物線的解析式;

          (2)點為所求拋物線的頂點,試判斷直線的關系,并說明理由.

          【答案】(1)(2)直線相切,理由見解析

          【解析】

          (1)已知AB兩點的坐標,要求拋物線的解析式,即要求點C的坐標,由相似三角形的判定與性質求出OC的長度,即可求出點C的坐標;(2)根據拋物線解析式求出點M的坐標,分別求出MP、CP、CM的長度,利用勾股定理逆定理判定△CPM為直角三角形,從而得出PCMC,所以直線MC與⊙P相切.

          解:(1)連接ACBC;

          AB是⊙P的直徑,

          ∴∠ACB=90°,即∠ACO+BCO=90°,

          ∵∠BCO+CBO=90°,

          ∴∠CBO=ACO,

          ∵∠AOC=BOC=90°,

          ∴△AOC∽△COB,

          =

          OC2=OA·OB=16,

          OC=4,

          C(0,﹣4),

          設拋物線的解析式為:y=a(x+8)(x﹣2),

          代入C點坐標得:a(0+8)(0﹣2)=﹣4,a=,

          故拋物線的解析式為:y=(x+8)(x﹣2)=+x﹣4;

          (2)(1)知:y=+x﹣4=;

          M(﹣3,﹣),

          又∵C(0,﹣4),P(﹣3,0),

          MP=PC=5,MC=,

          MP2=MC2+PC2,即△MPC是直角三角形,且∠PCM=90°,

          故直線MC與⊙P相切.

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】連接正八邊形的三個頂點,得到如圖所示的圖形,下列說法錯誤的是( )

          A. 是等邊三角形

          B. 連接,則分別平分

          C. 整個圖形是軸對稱圖形,但不是中心對稱圖形

          D. 四邊形與四邊形的面積相等

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖為二次函數的圖象,、為拋物線與坐標軸的交點,且,則下列關系中正確的是(

          A. ac<0 B. b<2a C. a+b=-1 D. a-b=-1

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】.如圖,圓柱底面半徑為,高為,點分別是圓柱兩底面圓周上的點,且、在同一母線上,用一棉線從順著圓柱側面繞3圈到,求棉線最短為_________

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某市計劃建造一座如圖設計的塔形建筑物作為市標,最底層的圓柱形的底面半徑為,高為米,再上去的圓柱形底面半徑以的比例縮小,而樓層的高度也以同樣的比例縮小,那么要使得建筑物的表面積不超過平方米(表面積不包括最底層的底面積),樓層最高為________層.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,把ABC放置在每個小正方形邊長為1的網格中,點AB,C均在格點上,建立適當的平面直角坐標系xOy,ABCABC關于y軸對稱.

          1)畫出該平面直角坐標系與ABC

          2)在y軸上找點P,使PC+PB的值最小,求點P的坐標與PC+PB'的最小值

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】對垃圾進行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護環(huán)境.為了解同學們對垃圾分類知識的了解程度,增強同學們的環(huán)保意識,普及垃圾分類及投放的相關知識,某校數學興趣小組的同學們設計了“垃圾分類知識及投放情況”問卷,并在本校隨機抽取若干名同學進行了問卷測試,根據測試成績分布情況,他們將全部測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計圖表:

          “垃圾分類知識及投放情況”問卷測試成績統(tǒng)計圖表

           組別

          分數/分

          頻數

          各組總分/分

          A

          60<x≤70

          38

          2 581

          B

          70<x≤80

          72

          5 543

          C

          80<x≤90

          60

          5 100

          D

          90<x≤100

          m

          2 796

          依據以上統(tǒng)計信息,解答下列問題:

          (1)求得m=________,n=__________;

          (2)這次測試成績的中位數落在______組;

          (3)求本次全部測試成績的平均數.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】小明從家去李寧體育館游泳,同時,媽媽從李寧體育館以50/分的速度回家,小明到體育館后發(fā)現要下雨,立即返回,追上媽媽后,小明以250/分的速度回家取傘,立即又以250/分的速度折回接媽媽,并一同回家.如圖是兩人離家的距離y(米)與小明出發(fā)的時間x(分)之間的函數圖像.(注:小明和媽媽始終在同一條筆直的公路上行走,圖像上A、CD、F四點在一條直線上)

          1)求線段oB及線段AF的函數表達式;

          2)求C點的坐標及線段BC的函數表達式;

          3)當x 時,小明與媽媽相距1500米;

          4)求點D坐標,并說明點D的實際意義.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】綜合與實踐﹣猜想、證明與拓廣

          問題情境:

          數學課上同學們探究正方形邊上的動點引發(fā)的有關問題,如圖1,正方形ABCD中,點EBC邊上的一點,點D關于直線AE的對稱點為點F,直線DFAB于點H,直線FB與直線AE交于點G,連接DG,CG.

          猜想證明

          (1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發(fā)現線段GFGD有確定的數量關系和位置關系,其結論為:   ;

          (2)希望小組的同學發(fā)現,圖1中的點E在邊BC上運動時,(1)中結論始終成立,為證明這兩個結論,同學們展開了討論:

          小敏:根據軸對稱的性質,很容易得到“GFGD的數量關系”…

          小麗:連接AF,圖中出現新的等腰三角形,如AFB,…

          小凱:不妨設圖中不斷變化的角∠BAF的度數為n,并設法用n表示圖中的一些角,可證明結論.

          請你參考同學們的思路,完成證明;

          (3)創(chuàng)新小組的同學在圖1中,發(fā)現線段CGDF,請你說明理由;

          聯系拓廣:

          (4)如圖3若將題中的正方形ABCD”變?yōu)?/span>菱形ABCD“,ABC=α,其余條件不變,請?zhí)骄俊?/span>DFG的度數,并直接寫出結果(用含α的式子表示).

          查看答案和解析>>

          同步練習冊答案