日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,等腰Rt△ABD中,ABAD,點M 為邊AD上一動點,點EDA的延長線上,且AMAE,以BE為直角邊,向外作等腰Rt△BEG,MGABN,連NE、DN

          (1)求證:∠BEN=∠BGN

          (2)求的值.

          (3)當(dāng)MAD上運動時,探究四邊形BDNG的形狀,并證明之.

          【答案】(1)詳見解析;(2);(3)四邊形BDNG是平行四邊形,證明詳見解析.

          【解析】

          (1)連接BM,推出BEBM,∠EBA=∠MBA,根據(jù)SAS證△BMN≌△BEN,推出∠BMN=∠BEN,證出∠BMN=∠BGN即可;

          (2)過GGHAB,垂足為H,證△BGH≌△ABE,推出BHAEAN,求出NGGHAB,代入求出即可;

          (3)根據(jù)ADN≌△BAE,推出BGBE,BGBE,得出BGDN,BGDN,根據(jù)平行四邊形的判定判斷即可.

          (1)證明:連BM,

          ∵∠BAD=90°,

          BAEM,

          AEAM,

          BEBM,∠EBA=∠MBA,

          在△BEN和△BMN

          ∴△BMN≌△BEN,

          ∴∠BMN=∠BEN

          BEBGBM,

          ∴∠BMN=∠BGN,

          ∴∠BEN=∠BGN

          (2)解:由(1)得,∠GBE=∠GNE=90°,

          ∴△NME等腰直角三角形,

          AEAN,

          GGHAB,垂足為H,

          ∴∠H=∠BAE=∠GBE=90°,

          ∴∠HGB+∠HBG=90°,∠HBG+∠ABE=90°,

          ∴∠HGB=∠EBA

          在△BGH和△ABE

          ,

          ∴△BGH≌△ABE,

          BHAEAN,

          HNABGHNGGHAB,

          (3)解:四邊形BDNG是平行四邊形,

          理由是:∵∠DAN=∠BAE=90°,ANAEABAD,

          ∴△ADN≌△BAE

          DNBE,DNBEBG,

          又∵BGBE,BGBE,

          BGDN,BGDN

          ∴四邊形BDNG為平行四邊形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AD是⊙O的直徑,AB為⊙O 的弦,OPAD,OPAB的延長線交于點P.點COP上,且BCPC

          (1)求證:直線BC是⊙O的切線;

          (2)若OA=3,AB=2,求BP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( 。

          A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000

          C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某廣場上有一個形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯誤的是(  )

          A. 紅花、綠花種植面積一定相等

          B. 紫花、橙花種植面積一定相等

          C. 紅花、藍花種植面積一定相等

          D. 藍花、黃花種植面積一定相等

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)

          (1)畫出將ABC向上平移1個單位長度,再向右平移5個單位長度后得到的A1B1C1;

          (2)畫出將ABC繞原點O順時針方向旋轉(zhuǎn)90°得到A2B2O;

          (3)在x軸上存在一點P,滿足點PA1與點A2距離之和最小,請直接寫出P點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在等腰Rt△ABC,BAC=90°EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

          1求證AEF是等腰直角三角形

          2如圖2,CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時連接AE,求證AF=AE;

          3如圖3CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,CEDABC的下方時,AB=2,CE=2,求線段AE的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

          (1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);

          (2)求ABC的面積(用含a的代數(shù)式表示);

          (3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,AB3,BC2,點EBC邊上,連接DE,將△DEC沿DE翻折,得到△DEC',C'EAD于點F,連接AC'.若點FAD的中點,則AC′的長度為( 。

          A.B.2C.2D.+1

          查看答案和解析>>

          同步練習(xí)冊答案