日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.

          探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為
          4
          4
          ,周長
          8
          8

          (2)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明.
          (3)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請(qǐng)說明理由.
          分析:(1)根據(jù)點(diǎn)P是AB的中點(diǎn)可判斷出PD、PE是△ABC的中位線,繼而可得出PD、PE的長度,也可得出四邊形DCEP的周長和面積.
          (2)先根據(jù)圖形可猜測(cè)PD=PE,從而連接CP,通過證明△PCD≌△PEB,可得出結(jié)論.
          (3)題目只要求是等腰三角形,所以需要分三種情況進(jìn)行討論,這樣每一種情況下的CE的長也就不難得出.
          解答:解:(1)根據(jù)△ABC中,AC=BC=4,∠C=90°,
          ∵PD⊥AC,PE⊥BC,
          ∴PD∥BC,PE∥AC,
          又∵點(diǎn)P是AB中點(diǎn),
          ∴PD、PE是△ABC的中位線,
          ∴PD=CE=2,PE=CD=2,
          ∴四邊形DCEP是正方形,面積為2×2=4,周長為2+2+2+4=8;

          (2)證明如下,AC=BC,∠C=90°,P為AB中點(diǎn),連接CP,
          ∴CP平分∠C,CP⊥AB,
          ∵∠PCB=∠B=45°,
          ∴CP=PB,
          ∵∠DPC+∠CPE=∠CPE+∠EPB=90°,
          ∴∠DPC=∠EPB,
          在△PCD和△PEB中,
          ∠DPC=∠EPB
          CP=PB
          ∠DCP=∠B
          ,
          ∴△PCD≌△PBE(ASA),
          ∴PD=PE.

          (3)△PBE是等腰三角形,
          ①當(dāng)PE=PB時(shí),此時(shí)點(diǎn)C與點(diǎn)E重合,CE=0;
          ②1)當(dāng)PB=BE時(shí),E在線段BC上,CE=2-
          2
          ,2)E在CB的延長線上,CE=2+
          2
          ;
          ③當(dāng)PE=BE時(shí),CE=1.
          點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)與判定,第三問的解答應(yīng)分情況進(jìn)行論證,不能漏解,有一定難度.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=4
          2
          ,∠C=90°.將一塊三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞P點(diǎn)旋轉(zhuǎn),三角板自兩直角邊分別交射線AC、射線CB于D、E兩點(diǎn),如右圖,①、②、③是旋轉(zhuǎn)三角板得到的圖形中的其中三種.
          精英家教網(wǎng)
          探究:(1)三角板繞P點(diǎn)旋轉(zhuǎn)時(shí),觀察線段PD與PE之間有什么大小關(guān)系?它們的關(guān)系表示為
           
          并以圖②為例,加以證明;
          (2)三角板繞P點(diǎn)旋轉(zhuǎn)時(shí)△PBE是否能成為等腰三角形,若能,指出所有的情況(即求出△PBE為等腰三角形時(shí)CE的長);若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:
          (1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.
          (2)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請(qǐng)說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
          (1)三角板繞點(diǎn)P旋轉(zhuǎn),當(dāng)PD⊥AC時(shí),如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時(shí),如圖②、③,PD=PE還成立嗎?并選擇其中的一個(gè)圖形證明你的結(jié)論.
          (2)三角板繞點(diǎn)P旋轉(zhuǎn),△PEB是否成為等腰三角形?若能,求出此時(shí)CE的長;若不能,請(qǐng)說明理由.
          (3)若將三角板的直角頂點(diǎn)放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,如圖④,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖形加以證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:在△ABC中,AC=BC=2,∠C=90°.將一塊足夠大的等腰直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).如圖①②③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
          (1)三角板繞點(diǎn)P旋轉(zhuǎn),當(dāng)PD⊥AC時(shí),如圖①,四邊形PDCE是正方形,則PD=PE.當(dāng)PD與AC不垂直時(shí),如圖②、③,PD=PE還成立嗎?并選擇其中的一個(gè)圖形證明你的結(jié)論.
          (2)若D、E兩點(diǎn)分別在線段AC和CB上移動(dòng)時(shí),設(shè)BE的長為x,△APD的面積為y,求y與x之間的函數(shù)關(guān)系式.
          (3)三角板繞點(diǎn)P旋轉(zhuǎn),△PEB是否能成為等腰三角形?若能,求出此時(shí)CE的長;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案