日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐標(biāo)系中.
          (1)若函數(shù)y1的圖象過點(﹣1,0),函數(shù)y2的圖象過點(1,2),求a,b的值.
          (2)若函數(shù)y2的圖象經(jīng)過y1的頂點.
          ①求證:2a+b=0;
          ②當(dāng)1<x< 時,比較y1 , y2的大。

          【答案】
          (1)

          解:由題意得: ,解得: ,

          故a=1,b=1.


          (2)

          解:①證明:∵y1=ax2+bx=a ,

          ∴函數(shù)y1的頂點為( ),

          ∵函數(shù)y2的圖象經(jīng)過y1的頂點,

          +b,即b= ,

          ∵ab≠0,

          ∴﹣b=2a,

          ∴2a+b=0.

          ②∵b=﹣2a,

          ∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,

          ∴y1﹣y2=a(x﹣2)(x﹣1).

          ∵1<x< ,

          ∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.

          當(dāng)a>0時,a(x﹣2)(x﹣1)<0,y1<y2;

          當(dāng)a<0時,a(x﹣1)(x﹣1)>0,y1>y2


          【解析】(1)結(jié)合點的坐標(biāo)利用待定系數(shù)法即可得出關(guān)于a、b的二元一次方程組,解方程組即可得出結(jié)論;(2)①將函數(shù)y1的解析式配方,即可找出其頂點坐標(biāo),將頂點坐標(biāo)代入函數(shù)y2的解析式中,即可的出a、b的關(guān)系,再根據(jù)ab≠0,整理變形后即可得出結(jié)論;②由①中的結(jié)論,用a表示出b,兩函數(shù)解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根據(jù)x的取值范圍可得出(x﹣2)(x﹣1)<0,分a>0或a<0兩種情況考慮,即可得出結(jié)論.本題考查了二次函數(shù)的綜合應(yīng)用,解題的關(guān)鍵是:(1)結(jié)合點的坐標(biāo)利用待定系數(shù)法求出函數(shù)系數(shù);(2)①函數(shù)y1的頂點坐標(biāo)代入y2中,找出a、b間的關(guān)系;②分a>0或a<0兩種情況考慮.本題屬于中檔題,難度不大,解決該題時,利用配方法找出函數(shù)y1的頂點坐標(biāo),再代入y2中找出a、b間的關(guān)系是關(guān)鍵.
          【考點精析】解答此題的關(guān)鍵在于理解二元一次方程組的解的相關(guān)知識,掌握二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知等腰△ABC中,AB=AC,BAC=120°,ADBC于點D,點PBA延長線上一點,點O是線段AD上一點,OP=OC.

          (1)求∠APO+∠DCO的度數(shù);

          (2)求證:點POC的垂直平分線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列命題正確的是(   )

          A. 任意兩個矩形一定相似 B. 相似圖形就是位似圖形

          C. 如果點是線段的黃金分割點,那么 D. 有一個銳角相等的兩個直角三角形相似

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知如圖,BECD,BE=DE,BC=DA.

          求證:(1)BEC≌△DAE;

          (2)DFBC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了了解某校學(xué)生的課外閱讀情況,隨機抽查了10學(xué)生周閱讀用時數(shù),結(jié)果如下表:

          周閱讀用時數(shù)(小時)

          4

          5

          8

          12

          學(xué)生人數(shù)(人)

          3

          4

          2

          1

          則關(guān)于這10名學(xué)生周閱讀所用時間,下列說法正確的是( 。
          A.中位數(shù)是6.5
          B.眾數(shù)是12
          C.平均數(shù)是3.9
          D.方差是6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】張華在一次數(shù)學(xué)活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導(dǎo)出“式子x+ (x>0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當(dāng)矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導(dǎo),你求得式子 (x>0)的最小值是(
          A.2
          B.1
          C.6
          D.10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

          (1)求證:△ACE≌△ACF;

          (2)若AB=21,AD=9,AC=17,求CF的長.

          查看答案和解析>>

          同步練習(xí)冊答案