日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9、為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設計總運費最省的草皮運送方案,并說明理由.
          分析:(1)根據(jù)圖形和題意可知SA=(92-2)×(42-2)=3600米2,SD=(62-2)×40=2400米2;
          (2)本小題為結論為開放題,可選擇一種方案再計算總運費,計算正確均可;
          (3)設甲地運往A校的草皮為x米2,總運費為y元,則甲地運往B校的草皮為(3500-x)米2,乙地運往A校的草皮為(3600-x)米2,乙地運往B校的草皮為(x-1100)米2,可得y=2.5x+11650,由x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,得到1100≤x≤3500,所以x=1100時,y有最小值=14400(元).
          解答:解:(1)依題意得
          SA=(92-2)×(42-2)=3600米2,
          SD=(62-2)×40=2400米2
          (2)本小題為結論為開放題,

          如:其中一種運送草皮分配方案(米2
          總運費=20×0.15×1500+10×0.15×2000+15×0.2×2100+20×0.2×400
          =15400(元);
          (3)設甲地運往A校的草皮為x米2,總運費為y元,
          由于草皮的總供求數(shù)量都是6000米2
          ∴甲地運往B校的草皮為(3500-x)米2,
          乙地運往A校的草皮為(3600-x)米2,
          乙地運往B校的草皮為(x-1100)米2,
          ∴y=20×0.15x+10×0.15×(3500-x)+15×0.2×(3600-x)+20×0.2×(x-1000)
          =2.5x+11650,
          ∵x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,
          ∴1100≤x≤3500,
          ∴當x=1100時,y有最小值.
          即y=2.5×1100+11650=14400(元).
          總運費最省的方案為
          點評:此題主要考查利用一次函數(shù)的模型解決實際問題的能力.要先根據(jù)題意列出函數(shù)關系式,再代數(shù)求值.解題的關鍵是要分析題意根據(jù)實際意義求解.注意要根據(jù)自變量的實際范圍確定函數(shù)的最值.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:解答題

          為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
           A校B校 
           路程(千米)運費單價(元) 路程(千米) 運費單價(元)  
           甲地          20          0.15          10            0.15
           乙地          15          0.20          20            0.20
          (注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年重慶市中考數(shù)學權威預測試卷(四)(解析版) 題型:解答題

          為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
          A校B校
          路程(千米)運費單價(元) 路程(千米) 運費單價(元)
          甲地 20 0.15 10 0.15
          乙地 15 0.20 20 0.20
          (注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

          (2004•麗水)為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
          A校B校
          路程(千米)運費單價(元) 路程(千米) 運費單價(元)
          甲地 20 0.15 10 0.15
          乙地 15 0.20 20 0.20
          (注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2004年浙江省麗水市中考數(shù)學試卷(解析版) 題型:解答題

          (2004•麗水)為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
          A校B校
          路程(千米)運費單價(元) 路程(千米) 運費單價(元)
          甲地 20 0.15 10 0.15
          乙地 15 0.20 20 0.20
          (注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

          查看答案和解析>>

          同步練習冊答案