日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】動手操作:如圖,在RtABC中,∠ACB=90°,AC=8BC=4,點(diǎn)D為邊AC上一動點(diǎn),DEABAB于點(diǎn)E,將∠A沿直線DE折疊,點(diǎn)A的對應(yīng)點(diǎn)為F.當(dāng)△DFC是直角三角形時,AD的長為_____

          【答案】3

          【解析】

          由折疊可得∠A=∠AFD,ADDF,由∠ACB90°,∠DFC90°,可證∠BFC=∠B,即CFBC4,根據(jù)勾股定理可求AD的長.

          解:由折疊的性質(zhì)可得,∠A=∠AFD,ADDF,

          當(dāng)DFC是直角三角形時,只有∠DFC90°這一種情況,

          又∵∠ACB90°

          ∴∠A+∠B90°,∠AFD+∠BFC90°,

          ∴∠BFC=∠B

          FCBC4,

          RtDFC中,CD2DF2FC2,

          ∴(8AD2AD242,

          AD3

          故答案為3.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對應(yīng)點(diǎn)D′之間的距離為 ______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB=2,BC=4,其兩條外角平分線ADCD交于點(diǎn)D,且∠ADC=45°,連接BDAC于點(diǎn)P,過點(diǎn)PPEACBC于點(diǎn)F,交AB的延長線于點(diǎn)E

          1)求證:∠ABC=90° ;

          2)求SPFCSPBF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.

          (1)試判斷△ABC的形狀;

          (2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,AEBCEAFCDF,且∠EAF=60°,BE=2cm,DF=3cm,試求平行四邊形ABCD的周長及面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCDAB=AD=2,A=60°,BC=CD=3

          1)求∠ADC的度數(shù)

          2)求四邊形ABCD的面積

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連結(jié)AE、DEDC

          ①求證:△ABE≌△CBD;

          ②若∠CAE=30°,求∠BDC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點(diǎn)C.CDx軸,垂足為D,若OB=2OA=3OD=12.

          (1)求一次函數(shù)與反比例函數(shù)的解析式;

          (2)記兩函數(shù)圖象的另一個交點(diǎn)為E,求CDE的面積;

          (3)直接寫出不等式kx+b≤的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè)AB兩種園藝造型均需用到杜鵑花,A種造型每個需用杜鵑花25盆,B種造型每個需用杜鵑花35盆,解答下列問題:

          (1)已知人民大道兩側(cè)搭配的AB兩種園藝造型共60個,恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個?

          (2)如果搭配一個A種造型的成本W與造型個數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個B種造型的成本為80現(xiàn)在觀海大道兩側(cè)也需搭配AB兩種園藝造型共50個,要求每種園藝造型不得少于20個,并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時滿足?請你通過計(jì)算說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案