日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在等腰△ABC中,

          1如圖1,若ABC為等邊三角形,D為線段BC中點,線段AD關(guān)于直線AB的對稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;

          2ABC為等邊三角形,點D為線段BC上一動點(不與B,C重合),連接AD并將線段AD繞點D逆時針旋轉(zhuǎn)60°得到線段DE,連接BE.

          ①根據(jù)題意在圖2中補全圖形;

          ②小玉通過觀察、驗證,提出猜測:在點D運動的過程中,恒有CD=BE.經(jīng)過與同學(xué)們的充分討論,形成了幾種證明的思路:

          思路1:要證明CD=BE,只需要連接AE,并證明ADC≌△AEB;

          思路2:要證明CD=BE,只需要過點DDFAB,交ACF,證明ADF≌△DEB;

          思路3:要證明CD=BE,只需要延長CB至點G,使得BG=CD,證明ADC≌△DEG;

          ……

          請參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)

          3小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=C,此時小明發(fā)現(xiàn)BE,BDAC三者之間滿足一定的的數(shù)量關(guān)系,這個數(shù)量關(guān)系是______________________.(直接給出結(jié)論無須證明)

          【答案】(1)30°;(2)答案見解析;(3)k(BE+BD)=AC

          【解析】試題解析:(1)由AD是等邊三角形ABCBC邊上的中線得ADBC,由AEAD關(guān)于AB對稱,從而AB垂直平分DE,可得ADE60°,所以BDE=30°;

          2①根據(jù)題意畫圖即可;

          如思路1,證明EAB≌△DAC即可得出結(jié)論.

          3k(BE+BD)=AC.

          試題解析:(1∵ΔABC是等邊三角形,DBC邊的中點

          ∴∠BAD=30°

          線段ADAE關(guān)于直線AB對稱

          DEAB

          ∴∠ADE=60°

          BDE=90°-60°=30°;

          2作圖如下:

          如圖,連接AE.

          3k(BE+BD)=AC.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠CAB=130°,AB、AC的垂直平分線分別交BC于點E、F則∠EAF等于(
          A.60°
          B.70°
          C.80°
          D.90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,D是BC邊的中點,E、F分別在AD及其延長線上,CE∥BF,連結(jié)BE、CF.

          (1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
          (2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中∠C=90°,線段AD是△ABC的角平分線,直線DE是線段AB的垂直平分線.若DE=1cm,DB=2cm,AC= cm.求點C到直線AD的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】命題兩直線平行,內(nèi)錯角相等的題設(shè)是_________,結(jié)論是_____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公園元旦期間,前往參觀的人非常多.這期間某一天某一時段,隨機調(diào)查了部分入園游客,統(tǒng)計了他們進園前等候檢票的時間,并繪制成如下圖表.表中“10~20”表示等候檢票的時間大于或等于10min而小于20min,其它類同.

          (1)這里采用的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),樣本容量是
          (2)表中a= , b= , 并請補全頻數(shù)分布直方圖;
          (3)在調(diào)查人數(shù)里,若將時間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計圖,則“40~50”的圓心角的度數(shù)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.

          (1)求證:BO=DO;

          (2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

          (1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出△A1B1C1各頂點坐標(biāo);
          (2)將△ABC向左平移1個單位,作出平移后的△A2B2C2 , 并寫出△A2B2C2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為

          查看答案和解析>>

          同步練習(xí)冊答案