日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知∠ADB,作圖.

          步驟1:以點D為圓心,適當長為半徑畫弧,分別交DA、DB于點M、N;再分別以點M、N為圓心,大于MN長為半徑畫弧交于點E,畫射線DE

          步驟2:在DB上任取一點O,以點O為圓心,OD長為半徑畫半圓,分別交DADB、DE于點P、QC;

          步驟3:連結(jié)PQ、OC

          則下列判斷:;②OC∥DA;③DP=PQ;④OC垂直平分PQ,其中正確的結(jié)論有(  )

          A. ①③④ B. ①②④ C. ②③④ D. ①②③④

          【答案】B

          【解析】

          DQ為直徑可得出DA⊥PQ,結(jié)合OC⊥PQ可得出DA∥OC,結(jié)論正確;由作圖可知∠CDQ=∠PDC,進而可得出弧PC=弧CQ ,OC平分∠AOB,結(jié)論①④正確;由∠AOB的度數(shù)未知,不能得出DP=PQ,即結(jié)論錯誤.綜上即可得出結(jié)論.

          解:∵DQ為直徑,

          ∴∠DPQ=90°,DA⊥PQ.

          ∵OC⊥PQ,

          ∴DA∥OC,結(jié)論正確;

          由作圖可知:∠CDQ=∠PDC,

          弧PC=弧CQ,OC平分∠AOB,結(jié)論①④正確;

          ∵∠ADB的度數(shù)未知,∠PDQ∠PQD互余,

          ∴∠PDQ不一定等于∠PQD,

          ∴DP不一定等于PQ,結(jié)論錯誤.

          綜上所述:正確的結(jié)論有①②④.

          故選:B.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,以ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.

          (1)猜想BGEG的數(shù)量關(guān)系.并說明理由;

          (2)延長DE,BA交于點H,其他條件不變,

          ①如圖2,若∠ADC=60°,求的值;

          ②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,tanA=,B=45°AB=14. BC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在矩形中ABCD,AB12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對位點G,過點BBECG,垂足為E且在AD上,BEPC于點F

          1)如圖1,若點EAD的中點,求證:△AEB≌△DEC

          2)如圖2,①求證:BPBF;②當AD25,且AEDE時,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(6分)如圖:在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.

          (1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1,(只畫出圖形).

          (2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,(只畫出圖形),寫出B2和C2的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】16屆省運會在我市隆重舉行,推動了我市各校體育活動如火如荼的開展,在某校射箭隊的一次訓練中,甲,乙兩名運動員前5箭的平均成績相同,教練將兩人的成績繪制成如下尚不完整的統(tǒng)計圖表.

          乙運動員成績統(tǒng)計表(單位:環(huán))

          1

          2

          3

          4

          5

          8

          10

          8

          6

          (1)甲運動員前5箭射擊成績的眾數(shù)是 環(huán),中位數(shù)是 環(huán);

          (2)求乙運動員第5次的成績;

          (3)如果從中選擇一個成績穩(wěn)定的運動員參加全市中學生比賽,你認為應(yīng)選誰去?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某年級380名師生秋游,計劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.

          甲種客車

          乙種客車

          載客量(座/輛)

          60

          45

          租金(元/輛)

          550

          450

          1)設(shè)租用甲種客車x輛,租車總費用為y元.求出y(元)與x(輛)之間的函數(shù)表達式;

          2)當甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費用最少,最少費用是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(給出定義)

          若四邊形的一條對角線能將四邊形分割成兩個相似的直角三角形,那么我們將這種四邊形叫做“跳躍四邊形”,這條對角線叫做“跳躍線”.

          (理解概念)

          (1)命題“凡是矩形都是跳躍四邊形”是什么命題(“真”或“假”).

          (2)四邊形ABCD為“跳躍四邊形”,且對角線AC為“跳躍線”,其中AC⊥CB,∠B=30°,AB=4,求四邊形ABCD的周長.

          (實際應(yīng)用)已知拋物線y=ax2+m(a≠0)與x軸交于B(﹣2,0),C兩點,與直線y=2x+b交于A,B兩點.

          (3)直接寫出C點坐標,并求出拋物線的解析式.

          (4)在線段AB上有一個點P,在射線BC上有一個點Q,P,Q兩點分別以個單位/秒,5個單位/秒的速度同時從B出發(fā),沿BA,BC方向運動,設(shè)運動時間為t,當其中一個點停止運動時,另一個點也隨之停止運動.在第一象限的拋物線上是否存在點M,使得四邊形BQMP是以PQ為“跳躍線”的“跳躍四邊形”,若存在,請直接寫出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

          已知是比例三角形,,請直接寫出所有滿足條件的AC的長;

          如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.

          如圖2,在的條件下,當時,求的值.

          查看答案和解析>>

          同步練習冊答案