日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙C的直徑,M、D兩點(diǎn)在AB的延長(zhǎng)線上,E是⊙C的點(diǎn),且DE2DBDA,延長(zhǎng)AEF,使得AEEF,設(shè)BF5,cosBED

          1)求證:DEB∽△DAE

          2)求DA、DE的長(zhǎng);

          3)若點(diǎn)FBE、M三點(diǎn)確定的圓上,求MD的長(zhǎng).

          【答案】1)見解析;(2AD,ED;(3

          【解析】

          1)利用兩邊成比例夾角相等兩三角形相似證明即可.

          2)由 ,即: ,即可求解.

          3)在BED中,過點(diǎn)BHBED于點(diǎn)H,設(shè)HDx,利用勾股定理構(gòu)建方程解決問題即可.

          解:(1)∵DE2DBDA,

          ,

          又∵∠D=∠D

          ∴△DEB∽△DAE

          2)∵△DEB∽△DAE,

          ∴∠DEB=∠DAEα,

          AB是直徑,

          ∴∠AEB90°,又AEEF,

          ABBF5,

          ∴∠BFE=∠BAEα,則BFED交于點(diǎn)H

          ,則BE3AE4

          ,即:

          解得:

          ADAB+BD,

          ED

          3)由點(diǎn)FB、E、M三點(diǎn)確定的圓上,則BF是該圓的直徑,連接MF

          BFED,∠BMF90°,∴∠MFB=∠Dβ,

          BED中,過點(diǎn)BHBED于點(diǎn)H,

          設(shè)HDx,則

          解得:

          ,則

          DMBDMB

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,,將繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),得到,點(diǎn)、分別與點(diǎn)、對(duì)應(yīng),邊分別交邊、于點(diǎn)、,如果點(diǎn)是邊的中點(diǎn),那么______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于反比例函數(shù)y=﹣,下列說法正確的是( 。

          A.圖象在第一、三象限B.圖象經(jīng)過點(diǎn)(2,﹣8)

          C.當(dāng)x>0時(shí),yx的增大而減小D.當(dāng)x<0時(shí),yx的增大而增大

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】探究問題:

          方法感悟:

          如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

          感悟解題方法,并完成下列填空:

          △ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)ABAD重合,由旋轉(zhuǎn)可得:

          AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

          ∴∠ABG+∠ABF=90°+90°=180°,

          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

          ∵∠EAF=45°

          ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

          ∵∠1=∠2,

          ∴∠1+∠3=45°.

          ∠GAF=∠_________.

          AG=AE,AF=AF

          ∴△GAF≌_______.

          ∴_________=EF,故DE+BF=EF.

          方法遷移:

          如圖,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          問題拓展:

          如圖,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說明理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB=4,BC=10,P為射線AB上一點(diǎn),連接PD、AC,且PDAC交于點(diǎn)E,過點(diǎn)AAF⊥PD,垂足為點(diǎn)F

          (1)當(dāng)點(diǎn)F落在BC邊上時(shí),求AP的值

          (2)當(dāng)△PAE為等腰三角形時(shí),求AP的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】臨近端午,某超市準(zhǔn)備購進(jìn)某品牌的白粽、豆沙粽、蛋黃粽,三種品種的粽子共1000袋(每袋均為同一品種的粽子),其中白粽每袋12個(gè),豆沙粽每袋8個(gè),蛋黃粽每袋6個(gè).為了推廣,超市還計(jì)劃將三個(gè)品種的粽子各取出來,拆開后重新組合包裝,制成A、B兩種套裝進(jìn)行特價(jià)銷售:A套裝為每袋白粽4個(gè),豆沙粽4個(gè);B套裝為每袋白粽4個(gè),蛋黃粽2個(gè),取出的袋數(shù)和套裝的袋數(shù)均為正整數(shù).若蛋黃粽的進(jìn)貨量不低于總進(jìn)貨量的,則豆沙粽最多購進(jìn)__袋.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)的圖象如圖所示.下列結(jié)論:①;②;③;④其中正確的個(gè)數(shù)有(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】五一勞動(dòng)節(jié)大酬賓!,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0”、“10”、“20“50的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購物券,購物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.

          (1)該顧客至多可得到________元購物券

          (2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:

          1)每千克茶葉應(yīng)降價(jià)多少元?

          2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案