日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知:等腰Rt△ABC中,∠BAC=90°,BC=2,E為邊AB上任意一點,以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠AED;②△AED∽△ECB;③AD∥BC;④四邊形ABCD的面積有最大值,且最大值為.其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)

          【答案】①③④

          【解析】

          首先根據(jù)已知條件看能得到哪些等量條件,然后根據(jù)得出的條件來判斷各結(jié)論是否正確.

          ∵△ABC、△DCE都是等腰Rt△,
          ∴AB=AC=,BC= ,CD=DE=CE;
          ∠B=∠ACB=∠DEC=∠DCE=45°;


          ①∵∠B=∠DEC=45°,
          ∴180°-∠BEC-45°=180°-∠BEC-45°;
          即∠AEC=∠BCE;故①正確;
          ③∵,
          ,
          由①知∠ECB=∠DCA,
          ∴△BEC∽△ADC;
          ∴∠DAC=∠B=45°;
          ∴∠DAC=∠BCA=45°,
          AD∥BC,故③正確;
          ②由③知:∠DAC=45°,則∠EAD=135°;
          ∠BEC=∠EAC+∠ECA=90°+∠ECA;
          ∵∠ECA<45°,
          ∴∠BEC<135°,
          即∠BEC<∠EAD;
          因此△EAD與△BEC不相似,故②錯誤;
          ④△ABC的面積為定值,若梯形ABCD的面積最大,則△ACD的面積最大;
          △ACD中,AD邊上的高為定值(即為1),若△ACD的面積最大,則AD的長最大;
          由④的△BEC∽△ADC知:當AD最長時,BE也最長;
          故梯形ABCD面積最大時,E、A重合,此時EC=AC=,AD=1;
          S梯形ABCD=(1+2)×1=,故④正確;
          故答案為:①③④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】質(zhì)地均勻的骰子六個面分別刻有16的點數(shù),扔兩次骰子,得到向上一面的兩個點數(shù),則下列事件中,是必然事件的是( )

          A. 點數(shù)都是偶數(shù) B. 點數(shù)的和為奇數(shù)

          C. 點數(shù)的和小于13 D. 點數(shù)的和小于2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=12,頂部A處的高AC4 m,B,C在同一水平面上.

          (1)求斜坡AB的水平寬度BC;

          (2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運送,當BF=3.5 m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1 m)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

          (1)請將下表補充完整:(參考公式:方差S2= [(x12+(x22+…+(xn2])

          平均數(shù)

          方差

          中位數(shù)

          7

             

          7

             

          5.4

             

          (2)請從下列三個不同的角度對這次測試結(jié)果進行

          ①從平均數(shù)和方差相結(jié)合看,   的成績好些;

          ②從平均數(shù)和中位數(shù)相結(jié)合看,   的成績好些;

          ③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,對角線ACBD相交于點O,在DC的延長線上取一點E,連接OEBC于點F.已知AB=4,BC=6,CE=2,則CF的長等于(

          A. 1 B. 1.5 C. 2 D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

          (1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

          (2)當降價多少元時,每星期的利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,完成任務(wù):

          自相似圖形

          定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

          任務(wù):

          (1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

          (2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

          (3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

          請從下列A、B兩題中任選一條作答:我選擇   題.

          A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

          如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

          B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

          如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

          (1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

          (2)求ABC的面積(用含a的代數(shù)式表示);

          (3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中,,,的對邊分別記為,,,由下列條件不能判定為直角三角形的是(

          A.B.

          C.D.

          查看答案和解析>>

          同步練習(xí)冊答案