日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】實(shí)驗(yàn)探究:
          (1)動(dòng)手操作:
          ①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過(guò)點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=;
          ②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過(guò)點(diǎn)B、C,那么∠ABD+∠ACD=
          (2)猜想證明:
          如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關(guān)系,并說(shuō)明理由;
          (3)靈活應(yīng)用:
          請(qǐng)你直接利用以上結(jié)論,解決以下列問(wèn)題:
          ①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);
          (4)②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9 ,
          若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為

          【答案】
          (1)60°;60°
          (2)

          猜想:∠A+∠B+∠C=∠BDC;

          證明:連接BC,

          在△DBC中,∵∠DBC+∠DCB+∠D=180°,

          ∴∠DBC+∠DCB=180°﹣∠BDC;

          在Rt△ABC中,

          ∵∠ABC+∠ACB+∠A=180°,

          即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,

          而∠DBC+∠DCB=180°﹣∠BDC,

          ∴∠A+∠ABD+∠ACD=180°﹣=∠BDC,

          即:∠A+∠B+∠C=∠BDC


          (3)

          ①由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,

          ∵∠BAC=40°,∠BDC=120°,

          ∴∠ABD+∠ACD=120°﹣40°=80°

          ∵BE平分∠ABD,CE平分∠ACB,

          ∴∠ABE+∠ACE=40°,

          ∴∠BEC=40°+40°=80°;


          (4)40°
          【解析】解:(1)動(dòng)手操作:
          ①∵BC∥EF,
          ∴∠DBC=∠E=∠F=∠DCB=45°,
          ∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,
          ∴∠ABD+∠ACD=60°;
          ②在△DBC中,∵∠DBC+∠DCB+∠D=180°,
          而∠D=90°,
          ∴∠DBC+∠DCB=90°;
          在Rt△ABC中,
          ∵∠ABC+∠ACB+∠A=180°,
          即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,
          而∠DBC+∠DCB=90°,
          ∴∠ABD+∠ACD=90°﹣∠A=60°.
          所以答案是60°;60°;
          4)②由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠ABF3+∠ACF3=∠BF3C=64°,
          ∵∠ABF3= ∠ABD,∠ACF3= ∠ACD,
          ∴ABD+∠ACD=120°﹣∠A,∠A+ (∠ABD+∠ACD)=64°,
          ∴∠A+ =64°,
          ∴∠A=40°,
          所以答案是40°.
          【考點(diǎn)精析】掌握三角形的內(nèi)角和外角是解答本題的根本,需要知道三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果x2-81=0,那么x2-81=0的兩個(gè)根分別是x1=________,x2=__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】把多項(xiàng)式(x﹣22﹣4x+8因式分解開(kāi)始出現(xiàn)錯(cuò)誤的一步是__

          解:原式=x﹣224x﹣8…A

          =x﹣22﹣4x﹣2…B

          =x﹣2)(x﹣2+4…C

          =x﹣2)(x+2…D

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算-7+1的結(jié)果是( )

          A. 6B. -6C. 8D. -8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,CF∥AB.
          (1)求∠FCD的度數(shù);
          (2)求證:AF∥CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 x=﹣1 是一元二次方程 ax2bx+60 的一個(gè)根,則 a+b 的值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, 在平面直角坐標(biāo)系中,點(diǎn)AB分別是軸正半軸, 軸正半軸上兩動(dòng)點(diǎn), , ,以AO,BO為鄰邊構(gòu)造矩形AOBC,拋物線軸于點(diǎn)D,P為頂點(diǎn),PM軸于點(diǎn)M

          (1)求, 的長(zhǎng)(結(jié)果均用含的代數(shù)式表示).

          (2)當(dāng)時(shí),求該拋物線的表達(dá)式.

          (3)在點(diǎn)在整個(gè)運(yùn)動(dòng)過(guò)程中.

          ①若存在是等腰三角形,請(qǐng)求出所有滿足條件的的值.

          ②當(dāng)點(diǎn)A關(guān)于直線DP的對(duì)稱點(diǎn)恰好落在拋物線的圖象上時(shí),請(qǐng)直接寫出的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD、BE分別是△ABC的中線,AD、BE相交于點(diǎn)F.
          (1)△ABC與△ABD的面積有怎樣的數(shù)量關(guān)系?為什么?
          (2)△BDF與△AEF的面積有怎樣的數(shù)量關(guān)系?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“新禧”雜貨店去批發(fā)市場(chǎng)購(gòu)買某種新型兒童玩具,第一次用1200元購(gòu)得玩具若干個(gè),并以7元的價(jià)格出售,很快就售完.由于該玩具深受兒童喜愛(ài),第二次進(jìn)貨時(shí)每個(gè)玩具的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)買的玩具數(shù)量比第一次多10個(gè),再按8元售完,問(wèn)該老板兩次一共賺了多少錢?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案