日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題情景:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

          (1)天天同學(xué)看過圖形后立即口答出:∠APC=110°,請你補全他的推理依據(jù).

          如圖2,過點PPEAB,

          ABCD

          PEABCD.(___)

          ∴∠A+APE=180°.

          C+CPE=180°.(___)

          ∵∠PAB=130°,PCD=120°,

          ∴∠APE=50°,CPE=60°

          ∴∠APC=APE+CPE=110°.(___)

          問題遷移:

          (2)如圖3,ADBC,當(dāng)點PA. B兩點之間運動時,∠ADP=α,∠BCP=β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由。

          (3)(2)的條件下,如果點PA. B兩點外側(cè)運動時(P與點A. B. O三點不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.

          【答案】1)平行于同一條直線的兩條直線平行;兩直線平行同旁內(nèi)角互補;等量代換;(2)∠CPD =∠α+∠β;(3)∠CPD=∠β∠α,∠CPD=∠α∠β.

          【解析】

          1)根據(jù)平行線的判定與性質(zhì)填寫即可;

          2)過PPEADCDE,推出ADPEBC,根據(jù)平行線的性質(zhì)得出∠α=DPE,∠β=CPE,即可得出答案;

          3)畫出圖形(分兩種情況①點PBA的延長線上,②點PAB的延長線上),根據(jù)平行線的性質(zhì)得出∠α=DPE,∠β=CPE,即可得出答案.

          (1)過點PPEAB,

          ABCD

          PEABCD.(平行于同一條直線的兩條直線平行)

          ∴∠A+APE=180°.

          C+CPE=180°.(兩直線平行同旁內(nèi)角互補)

          ∵∠PAB=130°,PCD=120°,

          ∴∠APE=50°,CPE=60°

          ∴∠APC=APE+CPE=110°.(等量代換)

          故答案為:平行于同一條直線的兩條直線平行;兩直線平行同旁內(nèi)角互補;等量代換.

          (2)CPD=α+β,

          理由是:如圖3,PPEADCDE,

          ADBC,

          ADPEBC

          ∴∠α=DPE,∠β=CPE

          ∴∠CPD=DPE+CPE=α+β;

          (3)當(dāng)PBA延長線時,

          PPEADCDE,如圖4

          (2)可知:∠α=DPE,∠β=CPE

          ∴∠CPD=βα;

          當(dāng)PAB延長線時,過PPEADCDE,如圖5

          (2)可知:∠α=DPE,∠β=CPE,

          ∴∠CPD=αβ.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,二次函數(shù)y=ax2x+c的圖象經(jīng)過點A0,1),B3, ),A點在y軸上,過點BBCx軸,垂足為點C

          (1)求直線AB的解析式和二次函數(shù)的解析式;

          (2)點N是二次函數(shù)圖象上一點(點NAB上方),過NNP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;

          (3)點N是二次函數(shù)圖象上一點(點NAB上方),是否存在點N,使得BMNC相互垂直平分?若存在,求出所有滿足條件的N點的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作!毒耪滤阈g(shù)》中記載:“今有五省、六燕,集稱之衡,雀俱重,燕俱輕,一雀一燕交而處,衡適平。并燕、雀重一斤。問燕,雀一枚各重幾何?”譯文:“今有只雀、只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤。問雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

          A. 4個 B. 3個 C. 2個 D. 1個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】圖①、圖②是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段的兩個端點均在小正方形的頂點上.

          1)如圖①,點在小正方形格點上,在圖①中作出點關(guān)于直線的對稱點,連接、、,并直接寫出四邊形的周長;

          2)在圖②中畫出一個以線段為一條對角線、面積為15的菱形,且點和點均在小正方形的頂點上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,ADBE相交于點F

          1)求證:△ACD∽△BFD;

          2)當(dāng)tan∠ABD=1,AC=3時,求BF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y=kx+b經(jīng)過點A-5,0),B-1,4

          1)求直線AB的表達(dá)式;

          2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

          3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,且AB =6,C是⊙O上一點,D是的中點,過點D作⊙O的切線,與AB、AC的延長線分別交于點E、F,連接AD.

          (l)求證:AF⊥EF;

          (2)填空:

          ①當(dāng)BE= 時,點C是AF的中點;

          ②當(dāng)BE= 時,四邊形OBDC是菱形,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果的乘積不含項,那么值分別是(

          A.B.

          C.D.

          查看答案和解析>>

          同步練習(xí)冊答案