日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為,將拋物線向右平移個(gè)單位得到拋物線,x軸于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左邊,交y軸于點(diǎn)C

          求拋物線的解析式.

          如圖,當(dāng)時(shí),連接AC,過(guò)點(diǎn)A交拋物線于點(diǎn)D,連接CD

          求拋物線的解析式.

          直接寫(xiě)出點(diǎn)D的坐標(biāo)為______

          若拋物線的對(duì)稱(chēng)軸上存在點(diǎn)P,使為等邊三角形,請(qǐng)直接寫(xiě)出此時(shí)m的值.

          【答案】1)拋物線的解析式為:2;②點(diǎn)D的坐標(biāo)為;(3)存在點(diǎn)P,使為等邊三角形,此時(shí)m的值為,理由見(jiàn)解析

          【解析】

          把原點(diǎn)代入拋物線,解方程組求得b,c的值,即可得出拋物線的解析式;

          根據(jù)拋物線的平移規(guī)律可得拋物線的解析式;

          由拋物線的解析式,求得點(diǎn),,,作軸于點(diǎn)H,設(shè)點(diǎn),證明,得,求得點(diǎn)D的橫坐標(biāo),再代入拋物線求得縱坐標(biāo),即可得出點(diǎn)D的坐標(biāo);

          設(shè)拋物線的解析式為:,可得,對(duì)稱(chēng)軸為直線,延長(zhǎng)APK,使,連接KC,作軸于G,證明,可得,利用中點(diǎn)坐標(biāo)公式得出點(diǎn)P的橫坐標(biāo)為:,所以,解方程即可得出m的值.

          拋物線經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為,

          ,解得

          拋物線的解析式為:;

          ,

          當(dāng)時(shí),拋物線的解析式為:;

          當(dāng)時(shí),,

          當(dāng)時(shí),,

          ,,

          如圖,作軸于點(diǎn)H,設(shè)點(diǎn)

          ,

          ,

          ,即,

          解得,此時(shí)

          點(diǎn)D的坐標(biāo)為,

          故答案為:,

          由題意,拋物線的解析式為:,

          ,對(duì)稱(chēng)軸為直線,

          延長(zhǎng)APK,使,連接KC,作軸于G,

          為等邊三角形,

          ,

          同理可證,

          ,

          即點(diǎn)K的橫坐標(biāo)為:,

          點(diǎn)P的橫坐標(biāo)為:,

          ,

          化簡(jiǎn),得,

          舍去

          存在點(diǎn)P,使為等邊三角形,此時(shí)m的值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿(mǎn)足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書(shū),學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,被調(diào)查學(xué)生須從文史類(lèi)、社科類(lèi)、小說(shuō)類(lèi)、生活類(lèi)中選擇自己喜歡的一類(lèi),根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

          (1)此次共調(diào)查了   名學(xué)生;

          (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

          (3)圖2小說(shuō)類(lèi)所在扇形的圓心角為   度;

          (4)若該校共有學(xué)生2500人,估計(jì)該校喜歡社科類(lèi)書(shū)籍的學(xué)生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】太陽(yáng)能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國(guó)普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè),如圖是太陽(yáng)能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽(yáng)能電池板與支撐角鋼AB的長(zhǎng)度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺(tái)面接觸點(diǎn)分別為D,F(xiàn),CD垂直于地面,于點(diǎn)E.兩個(gè)底座地基高度相同即點(diǎn)D,F(xiàn)到地面的垂直距離相同,均為30cm,點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長(zhǎng)度各是多少cm結(jié)果保留根號(hào)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A0,1),B33),C13).

          1)畫(huà)出△ABC關(guān)于點(diǎn)O的中心對(duì)稱(chēng)圖形△A1B1C1;

          2)畫(huà)出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB2C2;直接寫(xiě)出點(diǎn)C2的坐標(biāo)為   ;

          3)求在△ABC旋轉(zhuǎn)到△AB2C2的過(guò)程中,點(diǎn)C所經(jīng)過(guò)的路徑長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD的對(duì)角線AC的中點(diǎn)為O,過(guò)點(diǎn)O,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE、CF

          1)求證:四邊形AECF是菱形;

          2)若,請(qǐng)直接寫(xiě)出EF的長(zhǎng)為_(kāi)_________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線(k為常數(shù),且)x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C過(guò)點(diǎn)B的直線與拋物線的另一交點(diǎn)為D

          若點(diǎn)D的橫坐標(biāo)為,求拋物線的函數(shù)表達(dá)式;

          過(guò)D點(diǎn)向x軸作垂線,垂足為點(diǎn)M,連結(jié)AD,若,求點(diǎn)D的坐標(biāo);

          若在第一象限的拋物線上有一點(diǎn)P,使得以點(diǎn)A,B,P為頂點(diǎn)的三角形與相似,請(qǐng)直接寫(xiě)出的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一段拋物線:y=﹣xx2)(0≤x≤2)記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°C3,交x軸于點(diǎn)A3…如此進(jìn)行下去,則C2019的頂點(diǎn)坐標(biāo)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小儒在學(xué)習(xí)了定理直角三角形斜邊上的中線等于斜邊的一半之后做了如下思考:

          1)他認(rèn)為該定理有逆定理,即如果一個(gè)三角形某條邊上的中線等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形應(yīng)該成立,你能幫小儒證明一下嗎?如圖①,在ABC中,ADBC邊上的中線,若ADBDCD,求證:∠BAC90°

          2)接下來(lái),小儒又遇到一個(gè)問(wèn)題:如圖②,已知矩形ABCD,如果在矩形外存在一點(diǎn)E,使得AECE,求證:BEDE,請(qǐng)你作出證明,可以直接用到第(1)問(wèn)的結(jié)論.

          3)在第(2)問(wèn)的條件下,如果AED恰好是等邊三角形,直接用等式表示出此時(shí)矩形的兩條鄰邊ABBC的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣10)、B2,﹣3)兩點(diǎn),且拋物線與y軸交于點(diǎn)C

          1)求拋物線的解析式;

          2)求出CD兩點(diǎn)的坐標(biāo)

          3)在第四象限拋物線上有一點(diǎn)P,若△PCD是以CD為底邊的等腰三角形,求出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案