日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•宿遷)已知點E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,若AC⊥BD,且AC≠BD,則四邊形EFGH的形狀是
          矩形
          矩形
          (填“梯形”“矩形”或“菱形”)
          分析:四邊形EFGH為矩形,理由為:由E和H分別為AB與AD的中點,得到EH為三角形ABD的中位線,根據(jù)三角形中位線定理得到HE平行于BD且等于BD的一半,同理GF為三角形BCD的中位線,得到GF平行于BD且等于BD的一半,可得出HE與GF平行且相等,得到四邊形EFGH為平行四邊形,同理得到HM平行于ON,HN平行于OM,得到四邊形HMON為平行四邊形,又AC與BD垂直得到∠MON為直角,可得出HMON為矩形,根據(jù)矩形的性質(zhì)得到∠EHG為直角,可得出四邊形EFGH為矩形.
          解答:解:四邊形EFGH的形狀是矩形,理由為:
          根據(jù)題意畫出圖形,如圖所示:
          ∵點E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,
          ∴EH為△ABD的中位線,F(xiàn)G為△BCD的中位線,
          ∴EH=
          1
          2
          BD,EH∥BD,F(xiàn)G=
          1
          2
          BD,F(xiàn)G∥BD,
          ∴EH=FG,EH∥FG,
          ∴四邊形EFGH為平行四邊形,
          又HG為△ACD的中位線,
          ∴HG∥AC,又HE∥BD,
          ∴四邊形HMON為平行四邊形,
          又AC⊥BD,即∠AOD=90°,
          ∴四邊形HMON為矩形,
          ∴∠EHG=90°,
          ∴四邊形EFGH為矩形.
          故答案為:矩形.
          點評:此題考查了三角形的中位線定理,平行四邊形的判定與性質(zhì),以及矩形的判定與性質(zhì),熟練掌握三角形中位線定理是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•宿遷模擬)已知,關(guān)于x的一元二次方程x2-4x+c=0的一個根是2-
          3
          ,則另一個根為
          2+
          3
          2+
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•宿遷)某學(xué)校抽查了某班級某月10天的用電量,數(shù)據(jù)如下表(單位:度);
          度數(shù) 8 9 10 13 14 15
          天數(shù) 1 1 2 3 1 2
          (1)這10天用電量的眾數(shù)是
          13度
          13度
          ,中位數(shù)是
          13度
          13度
          ,極差是
          7度
          7度

          (2)求這個班級平均每天的用電量;
          (3)已知該校共有20個班級,該月共計30天,試估計該校該月總的用電量.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•宿遷)已知一組數(shù)據(jù):1,3,5,5,6,則這組數(shù)據(jù)的方差是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•宿遷)如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點D處測得壁畫底端的俯角∠BDF=30°,且點D距離地面的高度DE=2m,求壁畫AB的高度.

          查看答案和解析>>

          同步練習(xí)冊答案