日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線yaxm12+2m(其中m0)與其對稱軸l相交于點P.與y軸相交于點A0,m)連接并延長PA、PO,與x軸、拋物線分別相交于點B、C,連接BC將△PBC繞點P逆時針旋轉(zhuǎn),使點C落在拋物線上,設(shè)點C、B的對應(yīng)點分別是點B′和C′.

          1)當(dāng)m1時,該拋物線的解析式為:   

          2)求證:∠BCA=∠CAO;

          3)試問:BB′+BCBC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.

          【答案】1y=﹣x2+x+1;(2)見解析;(3BB′+BCBC′存在最小值,m1+.

          【解析】

          1)把點A的坐標(biāo)代入二次函數(shù)表達式得:ma(﹣m12+2m,解得:a=﹣,把m1代入上式,即可求解;

          2)求出點B、C的坐標(biāo),即可求解;

          3)當(dāng)點B′落在BC′所在的直線時,BB′+BCBC′存在最小值,證△BAO∽△POD,即可求解.

          解:(1)把點A的坐標(biāo)代入二次函數(shù)表達式得:ma(﹣m12+2m,解得:a=﹣,

          則二次函數(shù)的表達式為:y=﹣xm12+2m…①,

          則點P的坐標(biāo)為(m+12m),點A的坐標(biāo)為(0,m),

          m1代入①式,整理得:y=﹣x2+x+1,

          故:答案為:y=﹣x2+x+1

          2)把點P、A的坐標(biāo)代入一次函數(shù)表達式:ykx+b得:

          ,解得:,

          則直線PA的表達式為:yx+m

          y0,解得:x=﹣m1,即點B坐標(biāo)為(﹣m1,0),

          同理直線OP的表達式為:yx…②,

          將①②聯(lián)立得:axm12+2mx0,其中a=﹣,

          該方程的常數(shù)項為:am+12+2m,

          由韋達定理得:x1x2xCxP=﹣(m+12

          其中xPm+1,

          xC=﹣m1xB

          BCy軸,

          ∴∠BCA=∠CAO;

          3)如圖當(dāng)點B′落在BC′所在的直線時,BB′+BCBC′存在最小值,

          設(shè):直線lx軸的交點為D點,連接BB′、CC′,

          ∵點C關(guān)于l的對稱點為C′,

          CC′⊥l,而ODl,∴CC′∥OD,∴∠POD=∠PCC′,

          ∵∠PBC′+∠PBB180°,

          PBC′由△PBC旋轉(zhuǎn)而得,

          ∴∠PBC=∠PBC′,PBPB′,∠BPB′=∠CPC′,

          ∴∠PBC+∠PBB180°,

          BCAO,

          ∴∠ABC+∠BAO180°,

          ∴∠PBB=∠BAO,

          PBPB′,PCPC′,

          ∴∠PBB=∠PBB′=,

          ∴∠PCC′=∠PCC,

          ∴∠PBB=∠PCC′,

          ∴∠BAO=∠PCC′,

          而∠POD=∠PCC′,

          ∴∠BAO=∠POD,

          而∠POD=∠BAO90°,

          ∴△BAO∽△POD,

          BOm+1,PD2m,AOm,ODm+1代入上式并解得:

          m1+(負值已舍去).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線yx2bxcx軸交于點AB,AB2,與y軸交于點C,對稱軸為直線x2

          1)求拋物線的函數(shù)表達式;

          2)根據(jù)圖像,直接寫出不等式x2bxc0的解集:

          3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點AB,DE為頂點的四邊形是菱形,則點D的坐標(biāo)為:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

          (1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達式是y=ax2+c的形式.請根據(jù)所給的數(shù)據(jù)求出a,c的值.

          (2)求支柱MN的長度.

          (3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F,DFAC交于點MDEBC交于點N

          1)如圖1,若CE=CF,求證:DE=DF;

          2)如圖2,在∠EDF繞點D旋轉(zhuǎn)的過程中:

          探究三條線段ABCE,CF之間的數(shù)量關(guān)系,并說明理由;

          CE=4,CF=2,求DN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的對稱軸是直線x=﹣1,與x軸一個交點是點A(﹣3,0),且經(jīng)過點B(﹣2,6

          1)求該拋物線的解析式;

          2)若點(﹣y1)與點(2,y2)都在該拋物線上,直接寫出y1y2的大小關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,,,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點B、點C、點D的對應(yīng)點分別為點E、點F、點G

          如圖,當(dāng)點E落在DC邊上時,直寫出線段EC的長度為______;

          如圖,當(dāng)點E落在線段CF上時,AEDC相交于點H,連接AC,

          求證:;

          直接寫出線段DH的長度為______

          如圖設(shè)點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點在梯形的下底上,且與梯形的上底及兩腰都相切,若,則梯形的周長等于 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】垃圾分一分,明天美十分”.環(huán)保部門計劃訂制一批垃圾分類宣傳海報,海報版面不小于300平方米,當(dāng)宣傳海報的版面為300平方米時,價格為80/平方米.為了支持垃圾分類促進環(huán)保,廣告公司給予以下優(yōu)惠:宣傳海報版面每增加1平方米,每平方米的價格減少0.2元,但不能低于50/平方米.假設(shè)宣傳海報的版面增加平方米后,總費用為.

          1)求關(guān)于的函數(shù)表達式;

          2)訂制宣傳海報的版面為多少平方米時總費用最高?最高費用為多少元?

          3)環(huán)保部門希望總費用盡可能低,那么應(yīng)該訂制多少平方米的海報?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠CAB70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB'C'的位置,使得CCAB,則∠CAB'等于(  )

          A. 30°B. 25°C. 15°D. 10°

          查看答案和解析>>

          同步練習(xí)冊答案