日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y=ax2+bx-
          3
          交x軸于A(-3,0)、B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D在拋物線上,且CDAB,對(duì)稱軸直線l交x軸于點(diǎn)M,連結(jié)CM,將∠CMB繞點(diǎn)M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點(diǎn)E、F.
          (1)求拋物線的解析式;
          (2)當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),射線MF與拋物線的交點(diǎn)坐標(biāo)是______;
          (3)若ME=
          13
          CF,求點(diǎn)E的坐標(biāo).
          (1)因?yàn)閽佄锞過A(-3,0)、B(1,0)兩點(diǎn),
          0=9a-3b-
          3
          0=a+b-
          3
          ,
          解得:
          a=
          3
          3
          b=
          2
          3
          3
          ,
          y=
          3
          3
          x2+
          2
          3
          3
          x-
          3
          ;

          (2)∵OB=1,BC=2,
          ∴∠BCO=30°,
          ∴∠CBO=60°,
          ∴△MBC是等邊三角形,
          ∴∠CMB=60°,
          ∴∠BMC=∠EMF=60°,
          當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),
          ∴∠BME=∠CME=30°,
          ∴∠FMC=30°,
          ∴MF是拋物線的對(duì)稱軸,
          ∴射線MF與拋物線的交點(diǎn)是拋物線的頂點(diǎn),
          y=
          3
          3
          x2+
          2
          3
          3
          x-
          3
          ,
          ∴頂點(diǎn)坐標(biāo)為:(-1,-
          4
          3
          3
          )
          ,

          (3)∵OA=3,OB=1,OC=
          3

          OB
          OC
          =
          OC
          OA
          =
          1
          3
          ,
          又∠AOC=∠BOC=90°,
          ∴△AOC△COB,
          ∴∠OAC=∠BCO,
          ∴∠ACB=90°,
          ∵M(jìn)為AB中點(diǎn),
          ∴CM=BM,
          ∵OB=1,BC=2,
          ∴∠BCO=30°,
          ∴∠CBO=60°,
          ∴△MBC是等邊三角形,
          ∴∠CMB=∠MCB=60°,
          ∵ABCD,
          ∴∠ACD=30°,
          ∴∠BCD=120°,
          ∴∠BCD+∠EMF=180°,
          ∴∠MEC+∠MFC=180°,
          ∴∠MEB=∠MFC,
          又∵∠EMB=∠CMF,
          BM=CM
          ∠EMB=∠CMF
          ∠MEB=∠MFC
          ,
          ∴△MBE≌△MCF,
          ∴MF=ME,
          又∵M(jìn)E=
          13
          CF,
          ∴MF=
          13
          CF,
          令對(duì)稱軸與CD交于點(diǎn)H,點(diǎn)F的橫坐標(biāo)為t,
          在直角△MHF中MF2=MH2+HF2
          (
          13
          t)2=(
          3
          )2+(t+1)2

          t1=-
          1
          2
          ,t2=
          2
          3

          當(dāng)t=-
          1
          2
          時(shí),BE=CF=
          1
          2
          ,
          過點(diǎn)E作EG⊥x軸,垂足為G,
          在直角△BGE中,
          ∵∠GBE=60°,
          ∴∠GEB=30°,
          ∴GB=
          1
          2
          BE
          =
          1
          4
          ,
          ∴GE=
          3
          4

          ∴E(
          3
          4
          ,-
          3
          4
          ),
          同理,當(dāng)t=
          2
          3
          時(shí),點(diǎn)E(
          4
          3
          3
          3
          ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,平面直角坐標(biāo)系中,Rt△OAB的OA邊在x軸上,OB邊在y軸上,且OA=2,AB=
          5
          ,將△OAB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°后得△OCD,已知點(diǎn)E的坐標(biāo)是(2、2)
          (1)求經(jīng)過D、C、E點(diǎn)的拋物線的解析式;
          (2)點(diǎn)M(x、y)是拋物線上任意點(diǎn),當(dāng)0<x<2時(shí),過M作x軸的垂線交直線AC于N,試探究線段MN是否存在最大值,若存在,求出最大值是多少?并求出此時(shí)M點(diǎn)的坐標(biāo);
          (3)P為直線AC上一動(dòng)點(diǎn),連接OP,作PF⊥OP交直線AE于F點(diǎn),是否存在點(diǎn)P,使△PAF是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (如005•寧波)已知拋物線y=-x-如kx+rk(k>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,以AB為直徑的⊙E交y軸于點(diǎn)y、著(如圖),且y著=0,G是劣弧Ay上的動(dòng)點(diǎn)(不與點(diǎn)A、y重合),直線CG交x軸于點(diǎn)P.
          (1)求拋物線的解析式;
          (如)當(dāng)直線CG是⊙E的切線時(shí),求ca左∠PC右的值;
          (r)當(dāng)直線CG是⊙E的割線時(shí),作GM⊥AB,垂足為y,交P著于點(diǎn)M,交⊙E于另一點(diǎn)左,設(shè)M左=c,GM=u,求u關(guān)于c的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)為P(1,-2),且經(jīng)過點(diǎn)A(-3,6),并與x軸交于點(diǎn)B和C.

          (1)求這個(gè)二次函數(shù)的解析式,并求出點(diǎn)C坐標(biāo)及∠ACB的大。
          (2)設(shè)D為線段OC上一點(diǎn),滿足∠DPC=∠BAC,求D的坐標(biāo);
          (3)在x軸上,是否存在點(diǎn)M,使得以M為圓心的圓能與直線AC、直線PC及y軸都相切?如果存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=-
          5
          4
          x2+
          17
          4
          x+1與y軸交于A點(diǎn),過點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)
          (1)求直線AB的函數(shù)關(guān)系式;
          (2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
          (3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知△ABC是邊長為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
          (1)求B、C、D三點(diǎn)的坐標(biāo);
          (2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求它的解析式;
          (3)過點(diǎn)D作DEAB交經(jīng)過B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,與x軸相交于A、B兩點(diǎn)(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO
          (1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
          (2)求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點(diǎn)B、C,且BF=FC=10米.
          (1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點(diǎn)P在線段BC上,若設(shè)PM的長為x米,矩形NPME的面積為y平方米,求y與x的函數(shù)關(guān)系式,并求當(dāng)x為何值時(shí),安置區(qū)的面積y最大,最大面積為多少?
          (2)因三峽庫區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內(nèi)安置30戶移民農(nóng)戶,每戶建房占地100平方米,政府給予每戶4萬元補(bǔ)助,安置區(qū)內(nèi)除建房外的其余部分每平方米政府投入100元作為基礎(chǔ)建設(shè)費(fèi),在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設(shè)施施工費(fèi).為減輕政府的財(cái)政壓力,決定鼓勵(lì)一批非安置戶到此安置區(qū)內(nèi)建房,每戶建房占地120平方米,但每戶非安置戶應(yīng)向政府交納土地使用費(fèi)3萬元.為保護(hù)環(huán)境,建房總面積不得超過安置區(qū)面積的50%.若除非安置戶交納的土地使用費(fèi)外,政府另外投入資金150萬元,請(qǐng)問能否將這30戶移民農(nóng)戶全部安置?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          將現(xiàn)有一根長為1的鐵絲.
          (1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大.
          (2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大;②可以圍成圖3所示的“田”形矩形框,當(dāng)矩形框的長a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大.

          查看答案和解析>>

          同步練習(xí)冊答案