日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC是正三角形,曲線CDEFG…叫做“正三角形的漸開線”,曲線的各部分為圓。
          (1)圖中已經(jīng)有4段圓弧,請(qǐng)接著畫出第5段圓弧GH;
          (2)設(shè)△ABC的邊長(zhǎng)為a,則第1段弧的長(zhǎng)是
           
          ,第5段弧的長(zhǎng)是
           
          .前5段弧長(zhǎng)的和(即曲線CDEFGH的長(zhǎng))是
           

          (3)類似地有“正方形的漸開線”,“正五邊形的漸開線”,…,邊長(zhǎng)為a的正方形的漸開線的前5段弧長(zhǎng)的和是
           
          ;
          (4)猜想,①邊長(zhǎng)為a的正n邊形的前5段弧長(zhǎng)的和是
           
          ;
          ②邊長(zhǎng)為a的正n邊形的前m段弧長(zhǎng)的和是
           

          精英家教網(wǎng)
          分析:(1)以點(diǎn)B為圓心,BG長(zhǎng)為半徑畫弧即可;
          (2)利用弧長(zhǎng)公式計(jì)算.但要先確定弧所對(duì)的圓心角都是120度,半徑卻在不斷的增大,第一次是1,第二次是2,第三次是3,依此下去第五次是5,總和就是把五段弧加起來.
          (3)先利用五邊形的性質(zhì)求出五邊形的外角度數(shù),再利用弧長(zhǎng)公式計(jì)算;
          (4)五段弧相加,利用多邊形的外角公式和弧長(zhǎng)公式進(jìn)行計(jì)算.
          解答:解:(1)如右圖(1分)
          精英家教網(wǎng)

          (2)
          2
          3
          πa
          ,
          10
          3
          πa
          ,10πa;(3分)

          (3)
          15πα
          2
          ;(2分)

          (4)
          30
          n
          πa
          m(m+1)
          n
          πa
          .((2分)+2分))
          點(diǎn)評(píng):本題主要考查了弧長(zhǎng)公式及多邊形的內(nèi)角和及外角的計(jì)算方法,學(xué)生注意在做題時(shí)要把所學(xué)的各塊的知識(shí)給系統(tǒng)起來.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2012•青島模擬)同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
          探索發(fā)現(xiàn):
          (1)為了解決這個(gè)問題,我們不妨從最簡(jiǎn)單的正多邊形--正三角形入手.
          如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
          解:設(shè)△ABC的邊長(zhǎng)是a,面積為S,顯然S=
          1
          2
          a(h1+h2+h3
          O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
          OM=OAcos∠AOM=Rcos
          1
          2
          ∠AOB=Rcos
          1
          2
          ×120°=Rcos60°,
          AM=OAsin∠AOM=Rsin
          1
          2
          ∠AOB=Rsin
          1
          2
          ×120°=Rcos60°
          ∴AB=a=2AM=2Rsin60°
          ∴S△AOB=
          1
          2
          AB×OM=
          1
          2
          ×2Rsin60°•Rcos60°=R2sin60°cos60°
          ∴S△ABC=3S△AOB=3R2sin60°cos60°
          1
          2
          a(h1+h2+h3)=3R2sin60°cos60°
          即:
          1
          2
          ×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
          ∴h1+h2+h3=3Rcos60°
          (2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
          (3)類比上述探索過程,直接填寫結(jié)論
          正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=
          6Rcos30°
          6Rcos30°

          正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
          8Rcos22.5°
          8Rcos22.5°

          正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=
          nRcos
          180°
          n
          nRcos
          180°
          n

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC是正三角形,曲線CDEFG…叫做“正三角形的漸開線”,其中
          CD
          、
          DE
          EF
          、…
          的圓心精英家教網(wǎng)依次為A、B、C….當(dāng)漸開線延伸開時(shí),形成三個(gè)扇形S1、S2、S3和一系列扇環(huán)S4、S5、…若正△ABC的邊長(zhǎng)為1.
          (1)求出曲線CDEFG的總長(zhǎng)度.
          (2)求出扇環(huán)S4的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系xOy中,直線AB交x軸于A(1,0),交y軸負(fù)半軸于B(0,-5),C為x軸正半軸上一點(diǎn),且CA=
          4
          5
          CO

          (1)求△ABC的面積.
          (2)延長(zhǎng)BA到P,使得PA=AB,求P點(diǎn)的坐標(biāo).
          (3)如圖,D是第三象限內(nèi)一動(dòng)點(diǎn),且OD⊥BD,直線BE⊥CD于E,OF⊥OD交BE延長(zhǎng)線于F.當(dāng)D點(diǎn)運(yùn)動(dòng)時(shí),
          OD
          OF
          的大小是否發(fā)生變化?若改變,請(qǐng)說明理由;若不變,求出這個(gè)比值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,△ABC是一個(gè)電子跳蚤游戲盤,其中AB=6,AC=7,BC=8.如果跳蚤開始時(shí)在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第一次落點(diǎn))處,且CP1=CP0;第二步從P1跳到AB邊的P2(第二次落點(diǎn))處,且AP2=AP1;第三步從P2跳到BC邊的P3(第三次落點(diǎn))處,且BP3=BP2;…;跳蚤按上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P1與P2014之間的距離為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年河南省安陽市九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,△ABC是正三角形,曲線CDEFG…叫做“正三角形的漸開線”,其中的圓心依次為A、B、C….當(dāng)漸開線延伸開時(shí),形成三個(gè)扇形S1、S2、S3和一系列扇環(huán)S4、S5、…若正△ABC的邊長(zhǎng)為1.
          (1)求出曲線CDEFG的總長(zhǎng)度.
          (2)求出扇環(huán)S4的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案