日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=ax2+bx+c與y軸交于點C,與x軸交于點A(x1,0)、B(x2,0)(x1<x2),頂點M的縱坐標(biāo)為-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的兩個根,且x21+x22=10.
          (1)求A、B兩點的坐標(biāo);
          (2)求拋物線的解析式及點C的坐標(biāo);
          (3)在拋物線上是否存在點P,使三角形PAB的面積等于四邊形ACMB的面積的2倍?若存在,求出所有符合條件的點的坐標(biāo);若不存在,請說明理由.
          (1)∵x1,x2是方程x2-2(m-1)x+m2-7=0的兩個根,
          ∴x1+x2=2(m-1),x1•x2=m2-7.
          又∵x12+x22=10,
          ∴(x1+x22-2x1x2=10,
          ∴[2(m-1)]2-2(m2-7)=10,
          即m2-4m+4=0.
          解得:m1=m2=2.
          將m=2代入方程x2-2(m-1)x+m2-7=0,
          得:x2-2x-3=0,
          解得:x1=-1,x2=3.
          ∴點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,0).

          (2)因為拋物線與x軸的交點為A(-1,0)、B(3,0),由對稱性可知,頂點M的橫坐標(biāo)為1,則頂點M的坐標(biāo)為(1,-4).
          a-b+c=0
          9a+3b+c=0
          a+b+c=-4
          ,
          解得:
          a=1
          b=-2
          c=-3
          ,
          ∴拋物線的解析式為y=x2-2x-3.
          在y=x2-2x-3中,
          令x=0,得y=-3.
          ∴點C的坐標(biāo)為(0,-3).

          (3)設(shè)拋物線的對稱軸與x軸交于點D,
          則AO=OD=1,DB=2,OC=3,
          DM=4,AB=4.
          ∴S四邊形ACMB=S△ACO+S梯形OCMD+S△DMB
          =
          1
          2
          •AO•CO+
          1
          2
          (CO+MD)+
          1
          2
          DB•MD
          =
          1
          2
          ×1×3+
          1
          2
          ×(3+4)×1+
          1
          2
          ×2×4=9.
          設(shè)P(x0,y0)為拋物線上一點,
          則S△PAB=
          1
          2
          AB•|y0|.
          若S△PAB=2S四邊形ACMB,
          1
          2
          •AB•|y0|=18,
          ∴丨y0丨=9,y0=±9.
          將y0=9代入y=x2-2x-3中,得x2-2x-3=9,
          即x2-2x-12=0,
          解得:x1=1-
          13
          ,x2=1+
          13

          將y0=-9代入y=x2-2x-3中,得:x2-2x-3=-9,
          即x2-2x+6=0.
          ∵△=(-2)2-4×1×6=-20<0,
          ∴此方程無實數(shù)根.
          ∴符合條件的點P有兩個:P1(1-
          13
          ,9),P2(1+
          13
          ,9).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖所示,是一條高速公路的隧道口在平面直角坐標(biāo)系上的示意圖,點A和A1、點B和B1分別關(guān)于y軸對稱,隧道拱部分BCB1為一條拋物線,最高點C離路面AA1的距離為8米,點B離路面為6米,隧道的寬度AA1為16米;則隧道拱拋物線BCB1的函數(shù)解析式______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知直線y=2x+2交y軸于點A,交x軸于點B,直線l:y=-3x+9
          (1)求經(jīng)過A、B、C三點的拋物線的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時,x的取值范圍;
          (2)若點E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
          (3)在(1)、(2)的條件下,過E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
          1
          2
          ?若存在,求點H的橫坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
          (1)求拋物線的解析式;
          (2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
          (3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=x2+bx+c經(jīng)過點(1,-4)和(-1,2).求拋物線解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,將△AOB置于平面直角坐標(biāo)系中,其中點O為坐標(biāo)原點,點A的坐標(biāo)為(3,0),∠ABO=60度.
          (1)若△AOB的外接圓與y軸交于點D,求D點坐標(biāo).
          (2)若點C的坐標(biāo)為(-1,0),試猜想過D,C的直線與△AOB的外接圓的位置關(guān)系,并加以說明.
          (3)二次函數(shù)的圖象經(jīng)過點O和A且頂點在圓上,求此函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線與x軸交于A(m,0)、B(n,0)兩點,與y軸交于點C(0,3),點P是拋物線的頂點,若m-n=-2,m•n=3.
          (1)求拋物線的表達(dá)式及P點的坐標(biāo);
          (2)求△ACP的面積S△ACP

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx-3與x軸交于A、B兩點,與y軸交于C點,經(jīng)過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為
          5
          .設(shè)⊙M與y軸交于D,拋物線的頂點為E.
          (1)求m的值及拋物線的解析式;
          (2)設(shè)∠DBC=α,∠CBE=β,求sin(α-β)的值;
          (3)探究坐標(biāo)軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCE相似?若存在,請指出點P的位置,并直接寫出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某大眾汽車經(jīng)銷商在銷售某款汽車時,以高出進(jìn)價20%標(biāo)價.已知按標(biāo)價的九折銷售這款汽車9輛與將標(biāo)價直降0.2萬元銷售4輛獲利相同.
          (1)求該款汽車的進(jìn)價和標(biāo)價分別是多少萬元?
          (2)若該款汽車的進(jìn)價不變,按(1)中所求的標(biāo)價出售,該店平均每月可售出這款汽車20輛;若每輛汽車每降價0.1萬元,則每月可多售出2輛.求該款汽車降價多少萬元出售每月獲利最大?最大利潤是多少?

          查看答案和解析>>

          同步練習(xí)冊答案