日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,拋物線與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(-2,0).
          (1)求該拋物線的解析式;
          (2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (3)若平行于x軸的動(dòng)直線 與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          解:(1)由A(4,0),B(-2,0),設(shè)拋物線解析式為y=a(x-4)(x+2),
          將C(0,4)代入拋物線解析式得:4=a(0-4)(0+2),
          解得:a=-,
          則拋物線解析式為y=-(x-4)(x+2)=-x2+x+4;

          (2)設(shè)點(diǎn)Q的坐標(biāo)為(m,0),過點(diǎn)E作EG⊥x軸于點(diǎn)G,

          ∵A(4,0),B(-2,0),
          ∴AB=6,BQ=m+2,
          ∵QE∥AC,
          ∴△BQE∽△BAC,
          =,即=
          ∴EG=,
          ∴S△CQE=S△CBQ-S△EBQ
          =BQ•CO-BQ•EG
          =(m+2)(4-
          =-m2+m+
          =-(m-1)2+3,
          又∵-2≤m≤4,
          ∴當(dāng)m=1時(shí),S△CQE有最大值3,此時(shí)Q(1,0);

          (3)存在這樣的直線,使得△ODF是等腰三角形,理由為:
          在△ODF中,分三種情況考慮:
          ①若DO=DF,
          ∵A(4,0),D(2,0),
          ∴AD=OD=DF=2,
          又在Rt△AOC中,OA=OC=4,
          ∴∠OAC=45°,
          ∴∠DFA=∠OAC=45°,
          ∴∠ADF=90°,
          此時(shí),點(diǎn)F的坐標(biāo)為(2,2),
          由-x2+x+4=2,
          解得:x1=1+,x2=1-
          此時(shí),點(diǎn)P的坐標(biāo)為:P(1+,2)或P(1-,2);
          ②若FO=FD,過點(diǎn)F作FM⊥x軸于點(diǎn)M,

          由等腰三角形的性質(zhì)得:OM=OD=1,
          ∴AM=3,
          ∴在等腰直角△AMF中,MF=AM=3,
          ∴F(1,3),
          由-x2+x+4=3,
          解得:x1=1+,x2=1-,
          此時(shí),點(diǎn)P的坐標(biāo)為:P(1+,3)或P(1-,3);
          ③若OD=OF,
          ∵OA=OC=4,且∠AOC=90°,
          ∴AC=4
          ∴點(diǎn)O到AC的距離為2,而OF=OD=2<2,與OF≥2矛盾,
          所以AC上不存在點(diǎn)使得OF=OD=2,
          此時(shí),不存在這樣的直線l,使得△ODF是等腰三角形,
          綜上所述,存在這樣的直線l,使得△ODF是等腰三角形,
          所求點(diǎn)P的坐標(biāo)為:P(1+,2)或P(1-,2)或P(1+,3)或P(1-,3).
          分析:(1)由拋物線與x軸的兩交點(diǎn)A和B的坐標(biāo),設(shè)出拋物線解析式為y=a(x-4)(x+2),將C坐標(biāo)代入求出a的值,即可確定出拋物線解析式;
          (2)可先設(shè)Q的坐標(biāo)為(m,0);通過求△CEQ的面積與m之間的函數(shù)關(guān)系式,來得出△CQE的面積最大時(shí)點(diǎn)Q的坐標(biāo).△CEQ的面積=△CBQ的面積-△BQE的面積.可用m表示出BQ的長(zhǎng),然后通過相似△BEQ和△BCA得出△BEQ中BQ邊上的高,進(jìn)而可根據(jù)△CEQ的面積計(jì)算方法得出△CEQ的面積與m的函數(shù)關(guān)系式,可根據(jù)函數(shù)的性質(zhì)求出△CEQ的面積最大時(shí),m的取值,也就求出了Q的坐標(biāo);
          (3)本題要分三種情況進(jìn)行求解:①當(dāng)OD=OF時(shí),OD=DF=AD=2,又有∠OAF=45°,那么△OFA是個(gè)等腰直角三角形,于是可得出F的坐標(biāo)應(yīng)該是(2,2),由于P,F(xiàn)兩點(diǎn)的縱坐標(biāo)相同,因此可將F的縱坐標(biāo)代入拋物線的解析式中即可求出P的坐標(biāo);②當(dāng)OF=DF時(shí),如果過F作FM⊥OD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于∠OAF=45°,因此FM=AM=3,也就得出了F的縱坐標(biāo),然后根據(jù)①的方法求出P的坐標(biāo);③當(dāng)OD=OF時(shí),OF=2,由于O到AC的最短距離為2,因此此種情況是不成立的,綜合上面的情況即可得出符合條件的P的坐標(biāo).
          點(diǎn)評(píng):本題考查了二次函數(shù)的綜合題:點(diǎn)在拋物線上,則點(diǎn)的橫縱坐標(biāo)滿足其二次函數(shù)解析式;通過幾何關(guān)系列出二次函數(shù)關(guān)系式,并配成拋物線的頂點(diǎn)式y(tǒng)=a(x-h)2+k,當(dāng)a<0,x=h,y有最大值k.也考查了三角形相似的判定與性質(zhì).要注意的是(3)中不確定等腰三角形的腰是哪些線段時(shí),要分類進(jìn)行討論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•浦江縣模擬)已知:如圖,拋物線與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(-2,0).
          (1)求該拋物線的解析式;
          (2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (3)若平行于x軸的動(dòng)直線 與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線軸交于點(diǎn),點(diǎn),與直線相交于點(diǎn),點(diǎn),直線軸交于點(diǎn)

          (1)寫出直線的解析式.

          (2)求的面積.

          (3)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng)(不與重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)寫出的面積的函數(shù)關(guān)系式,并求出點(diǎn)運(yùn)動(dòng)多少時(shí)間時(shí),的面積最大,最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線軸交于點(diǎn)、點(diǎn),與直線相交于點(diǎn)、點(diǎn),直線軸交于點(diǎn)

          (1)求直線的解析式;
          (2)求的面積;
          (3)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng)(不與重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)寫出的面積的函數(shù)關(guān)系式,并求出點(diǎn)運(yùn)動(dòng)多少時(shí)間時(shí),的面積最大,最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京師大附中九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

           已知:如圖,拋物線軸交于點(diǎn),點(diǎn),與直線相交于點(diǎn),點(diǎn),直線軸交于點(diǎn)

          1.(1)求的面積.

          2.(2)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng)(不與重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)寫出的面積的函數(shù)關(guān)系式,并求出點(diǎn)運(yùn)動(dòng)多少時(shí)間時(shí),的面積最大,最大面積是多少?

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013屆河南省周口市初一下學(xué)期第九章一元一次不等式組檢測(cè)題 題型:解答題

          已知:如圖,拋物線軸交于點(diǎn),與軸交于兩點(diǎn),點(diǎn)的坐標(biāo)為

          (1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

          (2)設(shè)點(diǎn)是在第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),求使與四邊形面積相等的四邊形的點(diǎn)的坐標(biāo);

          (3)求的面積.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案