日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,平行四邊形在平面直角坐標(biāo)系中,其中點(diǎn)的坐標(biāo)分別是,,點(diǎn)軸正半軸上,點(diǎn)的中點(diǎn),點(diǎn)軸正半軸上,

          1)點(diǎn)的坐標(biāo)為______,點(diǎn)的坐標(biāo)為_______

          2)求點(diǎn)的坐標(biāo).

          3)如圖2,根據(jù)(2)中結(jié)論,將順時(shí)針旋轉(zhuǎn),求的長(zhǎng)度.

          【答案】1)(02);(3,0);(2)(1);(3

          【解析】

          1)由平行四邊形的性質(zhì)可得AB=CD,ABCD,由點(diǎn)Cy軸正半軸上,D的坐標(biāo)是(5,2),可得CD=AB=5,即可求點(diǎn)C,點(diǎn)B坐標(biāo);
          2)由中點(diǎn)坐標(biāo)公式可求點(diǎn)M坐標(biāo);
          3)由兩點(diǎn)距離公式可求CM的長(zhǎng),由旋轉(zhuǎn)的性質(zhì)可得△CMN是等腰直角三角形,由直角三角形的性質(zhì)可求MN的長(zhǎng).

          解:(1)∵四邊形ABCD是平行四邊形,
          AB=CDABCD,
          ∵點(diǎn)Cy軸正半軸上,D的坐標(biāo)是(52),
          ∴點(diǎn)C坐標(biāo)為(0,2),CD=5,
          AB=CD=5,

          又點(diǎn)A-2,0),
          ∴點(diǎn)B30
          故答案為:(0,2);(30);
          2)∵點(diǎn)MAD的中點(diǎn),且點(diǎn)A,D的坐標(biāo)分別是(-2,0),(52),
          ∴點(diǎn)M1);
          3)∵點(diǎn)M,1),點(diǎn)C0,2),
          CM=,

          ∵將△CMD順時(shí)針旋轉(zhuǎn)90°至△CND′,
          CM=CN=,∠MCN=90°,
          ∴△CMN是等腰直角三角形,
          MN=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在中,,線段的垂直平分線交于點(diǎn),交于點(diǎn),則以下結(jié)論:①是等腰三角形;②的角平分線;③的周長(zhǎng);④正確的有(

          A.①②B.①③C.③④D.②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在正方形ABCD中,點(diǎn)E,F分別在AB,BC上,且AEBF.

          1試探索線段AF,DE的數(shù)量關(guān)系,寫出你的結(jié)論并說明理由;

          2連接EF,DF,分別取AE,EF,FD,DA的中點(diǎn)HI,JK,則四邊形HIJK是什么特殊四邊形?請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋物線 過點(diǎn)A和B,與y軸交于點(diǎn)C.

          (1)求點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象.

          (2)點(diǎn)Q(8,m)在拋物線上,點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值.

          (3)CE是過點(diǎn)C的⊙M的切線,點(diǎn)E是切點(diǎn),求OE所在直線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長(zhǎng)為5的正方形邊與軸的夾角為,則的坐標(biāo)是_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

          A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).

          (1)求此拋物線解析式;

          (2)如圖1,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);

          (3)(2)的條件下,PA交對(duì)稱軸于點(diǎn)E,如圖2,過E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們約定:對(duì)角線互相垂直的凸四邊形叫做“正垂形”.

          (1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

          ②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

          (2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針方向排列的四個(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時(shí),求AC2+BD2的取值范圍;

          (3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫出滿足下列三個(gè)條件的拋物線的解析式;

          ; ②; ③“正垂形”ABCD的周長(zhǎng)為12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)

          (1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫出點(diǎn)B的坐標(biāo);

          (2)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A1B1C1;

          (3)求△ABC的面積;

          (4)在x軸上存在一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案