日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)M、N是AB上任意兩點(diǎn),且∠MCN=45°,點(diǎn)T為AB的中點(diǎn).以下結(jié)論:①AB=
          2
          AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號(hào)是( 。
          A、①②③④B、只有①②③
          C、只有①③④D、只有②④
          分析:此題要根據(jù)等腰三角形的性質(zhì)求解,由于△ABC是等腰三角形,顯然①的結(jié)論是成立的;②題中,可連接CT,利用勾股定理求證;③此題用通過(guò)構(gòu)造全等三角形來(lái)求解,過(guò)C作∠DCN=∠BCN,且CD=CB,連接DN、DM,通過(guò)兩步全等來(lái)判斷結(jié)論是否正確;④分別表示出三個(gè)三角形的面積,然后判斷它們是否符合題目給出的等量關(guān)系即可.
          解答:精英家教網(wǎng)解:①∵△ABC是等腰三角形,∴AB=
          2
          AC,故①正確;
          ②連接CT;
          由勾股定理得:CM2-MT2=CT2,NC2-NT2=CT2
          聯(lián)立兩式可得:CM2-MT2=NC2-NT2,即CM2+TN2=NC2+MT2
          故②正確;
          ③如圖,過(guò)C作∠NCD=∠BCN,且CD=CB=AC,連接DM、DN;
          ∵∠DCN=∠BCN,CD=BC,CN=CN,
          ∴△DCN≌△BCN,得BN=DN,∠NDC=∠B=45°;
          ∵∠MCN=45°,∠ACB=90°,
          ∴∠ACM=∠DCM=45°-∠BCN=45°-∠DCN,
          又∵AC=DC,CM=CM,
          ∴△ACM≌△DCM,得DM=AM,∠MDC=∠A=45°;
          ∴∠MDN=45°+∠45°=90°,
          在Rt△MDN中,由勾股定理得:DM2+DN2=MN2,即AM2+BN2=MN2,
          故③正確;
          ④S△ACM=
          1
          2
          AM•CT,S△BNC=
          1
          2
          BN•CT,S△MNC=
          1
          2
          MN•CT,
          ∵AM+BN≠M(fèi)N,∴S△ACM+S△BCN≠S△MNC,
          故④錯(cuò)誤;
          因此正確的結(jié)論是①②③,故選B.
          點(diǎn)評(píng):此題主要考查了等腰直角三角形的性質(zhì)、勾股定理以及全等三角形的判定和性質(zhì),難度適中.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D,E分別在AC,BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE,DF,EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:
          ①△DFE是等腰直角三角形;
          ②四邊形CDFE不可能為正方形,
          ③DE長(zhǎng)度的最小值為4;
          ④四邊形CDFE的面積保持不變;
          ⑤△CDE面積的最大值為8.
          其中正確的結(jié)論是( 。
          A、①②③B、①④⑤C、①③④D、③④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊精英家教網(wǎng)上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
          ①求證:△DFE是等腰直角三角形;
          ②在此運(yùn)動(dòng)變化的過(guò)程中,四邊形CDFE的面積是否保持不變?試說(shuō)明理由.
          ③求△CDE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
          ADDC
          =
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在等腰Rt△ABC中,∠C=90°,AC=8
          2
          ,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
          (1)在此運(yùn)動(dòng)變化的過(guò)程中,△DFE是
          等腰直角
          等腰直角
          三角形;
          (2)若AD=
          2
          ,求△DFE的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案