日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某數(shù)學(xué)活動小組在一次活動中,對一個數(shù)學(xué)問題作如下探究:

          問題發(fā)現(xiàn):如圖1,在等邊三角形ABC中,點(diǎn)M是邊BC上任意一點(diǎn),連接AM,以AM為邊作等邊三角形AMN,連接CN,證明:BM=CN.

          變式探究:如圖2,在等腰三角形ABC中,BA=BC,ABC=α,點(diǎn)M為邊BC上任意一點(diǎn),以AM為腰作等腰三角形AMN,MA=MN,使AMN=ABC,連接CN,請求出的值.(用含α的式子表示出來)

          解決問題:如圖3,在正方形ADBC中,點(diǎn)M為邊BC上一點(diǎn),以AM為邊作正方形作AMEF,N為正方形AMEF的中心,連接CN,若正方形AMEF的邊長為,CN=,請你求正方形ADBC的邊長.

          【答案】問題發(fā)現(xiàn):證明見解析;變式探究:2sin 解決問題:3

          【解析】

          試題分析:問題發(fā)現(xiàn):根據(jù)ABC,AMN為等邊三角形,得到AB=AC,AM=AN且BAC=MAN=60°從而得到BACCAM=MANCAM,即BAM=CAN,證明BAM≌△CAN,即可得到BM=CN.

          變式探究:根據(jù)ABC,AMN為等腰三角形,得到=1且ABC=AMN,證明ABCAMN,得到,利用等腰三角形的性質(zhì)BA=BC,得到,證明ABMACN,得到,作BDAC,如圖2,再由AB=BC,得到ABD=,根據(jù)sinABD=,得到AD=ABsin,則AC=2AD=2ABsin,從而得到=2sin

          解決問題:利用四邊形ADBC,AMEF為正方形,得到ABC=BAC=45°MAN=45°,即BAM=CAN,由,得到,證明ABMACN,得到,進(jìn)而得到=cos45°=,求出BM=2,設(shè)AC=x,利用勾股定理,在RtAMC,AC2+CM2=AM2,即x2+(x﹣2)2=10,解得:x1=3,x2=﹣1(舍去),即可解答.

          解:問題發(fā)現(xiàn),

          ∵△ABC,AMN為等邊三角形,

          AB=AC,AM=AN且BAC=MAN=60°

          ∴∠BACCAM=MANCAM,

          ∴∠BAM=CAN,

          BAMCAN中,

          ∴△BAM≌△CAN,

          BM=CN

          變式探究:=1且ABC=AMN

          ∴△ABCAMN,

          AB=BC,

          ,

          AM=MN

          ,

          ∴∠BAM=CAN

          ∴△ABMACN,

          ,

          作BDAC,如圖2,

          AB=BC,

          ∴∠ABD=,

          sinABD=,

          AD=ABsin

          AC=2AD=2ABsin,

          =2sin

          解決問題:

          如圖3,連接AB,AN.

          四邊形ADBC,AMEF為正方形,

          ∴∠ABC=BAC=45°MAN=45°,

          ∴∠BACMAC=MANMAC

          BAM=CAN

          ,

          ,

          ∴△ABMACN,

          =cos45°=,

          BM=2,

          設(shè)AC=x,

          在RtAMC,

          AC2+CM2=AM2

          即x2+(x﹣2)2=10,

          解得:x1=3,x2=﹣1(舍去),

          答:邊長為3.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時間y(h)與裝載速度x(t/h)之間的函數(shù)關(guān)系如圖.

          (1)這批貨物的質(zhì)量是多少?寫出y與x之間的函數(shù)表達(dá)式;

          (2)中午12:00輪船到達(dá)目的地后,接到氣象部門預(yù)報(bào),晚上8:00港口將受到臺風(fēng)影響必須停止卸貨,為確保這批貨物安全卸貨,如果以8t/h的速度卸貨,那么在臺風(fēng)到來之前能否卸完這批貨?如果要在臺風(fēng)到來前卸完這批貨,那么每小時至少要卸多少噸的貨?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知一次函數(shù)y1=k1x+b(k1為常數(shù),且k1≠0)的圖象與反比例函數(shù)y2=(k2為常數(shù),且k2≠0)的圖象相交于A(1,2),B(m,﹣1)兩點(diǎn).

          (1)求一次函數(shù)和反比例函數(shù)的解析式;

          (2)若A1(m1,n1),A(m2,n2),A3(m3,n3)為反比例函數(shù)圖象上的三點(diǎn),且m1<m2<0<m3,請直接寫出n1、n2、n3的大小關(guān)系式;

          (3)結(jié)合圖象,請直接寫出關(guān)于x的不等式k1x+b>的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 (2016新疆生產(chǎn)建設(shè)兵團(tuán)第6題)某小組同學(xué)在一周內(nèi)參加家務(wù)勞動時間與人數(shù)情況如表所示:

          勞動時間(小時)

          2

          3

          4

          人數(shù)

          3

          2

          1

          下列關(guān)于“勞動時間”這組數(shù)據(jù)敘述正確的是(

          A.中位數(shù)是2 B.眾數(shù)是2 C.平均數(shù)是3 D.方差是0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①所示,直線L:y=m(x+10)與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).

          (1)當(dāng)OA=OB時,試確定直線L的解析式;

          (2)在(1)的條件下,如圖②所示,設(shè)Q為AB延長線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AMOQ于M,BNOQ于N,若AM=8,BN=6,求MN的長;

          (3)當(dāng)m取不同的值時,點(diǎn)B在y軸正半軸上運(yùn)動,分別以O(shè)B、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連EF交y軸于P點(diǎn),如圖③.

          問:當(dāng)點(diǎn)B在y軸正半軸上運(yùn)動時,試猜想PB的長是否為定值?若是,請求出其值;若不是,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某區(qū)新教師招聘中,七位評委獨(dú)立給出分?jǐn)?shù),得到一列數(shù).若去掉一個最高分和一個最低分,得到一列新數(shù),那么這兩列數(shù)的相關(guān)統(tǒng)計(jì)量中,一定相等的是( )
          A.中位數(shù)
          B.眾數(shù)
          C.方差
          D.平均數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列計(jì)算正確的是( )

          A. -12-8=-4 B. -5+4=-9 C. -1-9=-10 D. -32=9

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】用四舍五入法對2.098176取近似值,其中正確的是(

          A. 2.09(精確到0.01) B. 2.098(精確到千分位)

          C. 2.0(精確到十分位) D. 2.0981(精確到0.0001)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABCD中, BA30°,則∠A、B、∠C、∠D的度數(shù)分別是 ( )

          A、95°、85°、95°、85° B、85°95°、8 5°、95°

          C、105°、75°、105°、75° D、75°、105°、75°、105°

          查看答案和解析>>

          同步練習(xí)冊答案