日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求證:①AC=BD;②∠APB=60度;
          (2)如圖②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關系式為______;∠APB的大小為______;
          (3)如圖③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,則AC與BD間的等量關系式為______;∠APB的大小為______.

          解:(1)①∵∠AOB=∠COD=60°,
          ∴∠AOB+∠BOC=∠COD+∠BOC.
          即:∠AOC=∠BOD.
          又∵OA=OB,OC=OD,
          ∴△AOC≌△BOD.
          ∴AC=BD.
          ②由①得:∠OAC=∠OBD,
          ∵∠AEO=∠PEB,∠APB=180°-(∠BEP+∠OBD),∠AOB=180°-(∠OAC+∠AEO),
          ∴∠APB=∠AOB=60°.

          (2)AC=BD,α

          (3)AC=k•BD,180°-α.
          分析:(1)分析結論AC=BD可知,需要證明△AOC≌△BOD,圍繞這個目標找全等的條件;
          (2)與圖①比較,圖形條件發(fā)生了變化,仍然可以證明△AOC≌△BOD,方法類似;
          (3)轉化為證明△AOC∽△BOD.
          點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          2007年5月17日我市榮獲“國家衛(wèi)生城市稱號”.在“創(chuàng)衛(wèi)”過程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點周圍180m范圍內(nèi)為文物保護區(qū),在MN上點A處測得C在A的北偏東60°方向上,從A向東走500m到達B處精英家教網(wǎng),測得C在B的北偏西45°方向上.
          (1)NM是否穿過文物保護區(qū)?為什么?(參考數(shù)據(jù):
          3
          ≈1.732)
          (2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工作需要多少天?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為
          π

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知,如圖,∠1=∠2,
           
          .求證:AB=AC.
          (1)在橫線上添加一個使命題的結論成立的條件;
          (2)寫出證明過程.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知,如圖,直角坐標系內(nèi)的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為
          AD邊上一動點(與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經(jīng)過點B,此時直線的解析式是y=2x+1,
          (Ⅰ)求BC、AP1的長;
          (Ⅱ)設AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關系式,寫出自變量m的取值范圍;
          (Ⅲ)以點E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關系,并求出AP相應的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,拋物線y=-
          3
          3
          x2-
          2
          3
          3
          x+
          3
          的圖象與x軸分別交于A,B兩點,與y軸交精英家教網(wǎng)于C點,⊙M經(jīng)過原點O及點A、C,點D是劣弧
          OA
          上一動點(D點與A、O不重合).
          (1)求拋物線的頂點E的坐標;
          (2)求⊙M的面積;
          (3)連CD交AO于點F,延長CD至G,使FG=2,試探究,當點D運動到何處時,直線GA與⊙M相切,并請說明理由.

          查看答案和解析>>

          同步練習冊答案