日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀下列材料:

          問題:如圖1,在平行四邊形ABCD,EAD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G.使得∠EGB=∠EAB,連接AG.

          求證:EG=AG+BG.

          小明同學(xué)的思路是:作∠CAM=∠EABCE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.

          參考小明同學(xué)的思路,探究并解決下列問題:

          (1)完成上面問題中的證明;

          (2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          :線段EG、AGBG之間的數(shù)量關(guān)系為___________________________________________________.證明:

          【答案】(1)詳見解析;(2)EG+BG=AG,證明詳見解析.

          【解析】

          1)作∠GAH=EABGE于點H,證△ABGOAEH,再證ΔACH是等邊三角形,得AG=HG ,EG=AG+BG;(2)作∠GAH=EABGE的延長線于點H,則∠GAB=HAE,證ΔABGΔAEH,得BG=EH,AG=AH,再證ΔAGH是等腰直角三角形,可得AG=HG.EG+BG=AG.

          (1)證明:如圖1,作∠GAH=EABGE于點H,

          則∠GAB=HAE.

          ∵∠EAB=EGB,AOE=BOF,

          ∴∠ABG=AEH

          ΔABGΔAEH

          所以△ABGOAEH

          BG=EH,AG=AH

          ∵∠GAH=EAB=60°

          ΔACH是等邊三角形

          AG=HG.

          EG=AG+BG

          (2)EG+BG=AG

          證明:

          如圖2,作∠GAH=EABGE的延長線于點H,則∠GAB=HAE

          ∵∠EGB=EAB=90°

          ∴∠ABG+AEG=AEG+AEH=180°

          ∴∠ABG=AEH.

          ΔABGΔAEH

          ΔABGΔAEH

          BG=EH,AG=AH

          ∵∠GAH=EAB=90°

          ΔAGH是等腰直角三角形

          AG=HG

          EG+BG=AG

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某研究所將某種材料加熱到1000時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設(shè)降溫開始后經(jīng)過x min時,A、B兩組材料的溫度分別為yA、yB,yAyBx的函數(shù)關(guān)系式分別為yA=kx+b,yB=x602+m(部分圖象如圖所示),當(dāng)x=40時,兩組材料的溫度相同.

          1)分別求yA、yB關(guān)于x的函數(shù)關(guān)系式;

          2)當(dāng)A組材料的溫度降至120℃時,B組材料的溫度是多少?

          3)在0x40的什么時刻,兩組材料溫差最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,⊙O的半徑為rr0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關(guān)于⊙O反演點

          如圖2,⊙O的半徑為4,點B⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】因魔幻等與眾不同的城市特質(zhì),以及抖音等新媒體的傳播,重慶已成為國內(nèi)外游客最喜歡的旅游目的地城市之一.著名“網(wǎng)紅打卡地”磁器口在2018年五一長假期間,接待游客達20萬人次,預(yù)計在2020年五一長假期間,接待游客將達28.8萬人次.在磁器口老街,美食無數(shù),一家特色小面店希望在五一長假期間獲得好的收益,經(jīng)測算知,該小面成本價為每碗6元,借鑒以往經(jīng)驗:若每碗賣25元,平均每天將銷售300碗,若價格每降低1元,則平均每天多銷售30碗.

          (1)求出20182020年五一長假期間游客人次的年平均增長率;

          (2)為了更好地維護重慶城市形象,店家規(guī)定每碗售價不得超過20元,則當(dāng)每碗售價定為多少元時,店家才能實現(xiàn)每天利潤6300元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

          (1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

          (2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下述材料:

          我們在學(xué)習(xí)二次根式時,熟悉的分母有理化以及應(yīng)用.其實,有一個類似的方法叫做分子有理化”:

          與分母有理化類似,分母和分子都乘以分子的有理化因式,從而消掉分子中的根式比如:

          分子有理化可以用來比較某些二次根式的大小,也可以用來處理一些二次根式的最值問題.例如:

          比較的大。梢韵葘⑺鼈兎肿佑欣砘缦拢

          因為,所以

          再例如:求的最大值.做法如下:

          解:由可知,而

          當(dāng)時,分母有最小值2,所以的最大值是2

          解決下述問題:

          1)比較的大。

          2)求的最大值和最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計劃去往位于燈塔P的北偏東45方向上的B.(參考數(shù)據(jù)≈1.414, ≈1.732 ≈2.449

          1)問B處距離燈塔P有多遠?(結(jié)果精確到0.1海里)

          2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點O.圓形暗礁區(qū)域的半徑為50海里,進入這個區(qū)域,就有觸礁的危險.請判斷海輪到達B處是否有觸礁的危險,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

          1)請將下表補充完整:

          2)請從下列三個不同的角度對這次測試結(jié)果進行分析:

          ①從平均數(shù)和方差相結(jié)合看,  的成績好些;

          ②從平均數(shù)和中位數(shù)相結(jié)合看,  的成績好些;

          ③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案