日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線過A1,0)、B(﹣3,0),C0,﹣3)三點,直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點Pm,n)是線段AD上的動點,過點P的直線垂直于x軸,交拋物線于點Q

          1)求直線AD及拋物線的解析式;

          2)求線段PQ的長度lm的關(guān)系式,m為何值時,PQ最長?

          3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得PQ、D、R為頂點的四邊形是平行四邊形?若存在,求出點R的坐標(biāo);若不存在,說明理由.

          【答案】1)直線AD的解析式為yx1,拋物線的解析式為:yx2+2x3;(2l=﹣m2m+2 (﹣2≤m≤1),當(dāng)m=﹣時,PQ最長,最大值為;(3)存在,符合條件的點R共有6個,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R50,﹣3R62,﹣1).

          【解析】

          1)拋物線yax2+bx3A1,0),B(﹣3,0),C0,﹣3),代入可求出拋物線的解析式,點D在拋物線上且橫坐標(biāo)為﹣2,可求點D的坐標(biāo),根據(jù)A、D兩點坐標(biāo),用待定系數(shù)法可求直線AD的解析式;

          2)點PAD上,點Q在拋物線上,當(dāng)橫坐標(biāo)為m時,相應(yīng)的縱坐標(biāo)可以根據(jù)解析式表示出來,而PQ的長l就是P點、Q點縱坐標(biāo)的差,于是可以得到lm的函數(shù)關(guān)系式,再依據(jù)函數(shù)的最值,可求m為何值時,PQ最長,PQ的最大值也能求出;

          3)使P,QD,R為頂點的四邊形是平行四邊形,可以分兩種情況:一是PQ為一邊時,點R必在直線x=﹣2上,再根據(jù)PQ為最大值以下的整數(shù)值,得到PQ的整數(shù)值,在直線x=﹣2上可以找到點R的位置,確定點R的坐標(biāo),得出在點D上方存在,在點D下方也存在;二是PQ為一條對角線時,根據(jù)平行四邊形的性質(zhì),PQDR互相平分,此時RC 重合.

          解:(1)設(shè)拋物線的解析式為yax2+bx+c,將A10),B(﹣30C0,﹣3)代入yax2+bx+c得:

          ,

          解得:,

          ∴拋物線的解析式為:yx2+2x3,

          當(dāng)x=﹣2時,y=(﹣2243=﹣3,

          D(﹣2,﹣3),

          設(shè)直線AD的解析式為ykx+b,將A1,0),D(﹣2,﹣3)代入得:

          解得:,

          ∴直線AD的解析式為yx1;

          因此直線AD的解析式為yx1,拋物線的解析式為:yx2+2x3

          2)∵點P在直線AD上,Q拋物線上,Pmn),

          nm1 Qm,m2+2m3

          PQ的長l=(m1)﹣(m2+2m3)=﹣m2m+2 (﹣2≤m≤1

          ∴當(dāng)m=﹣時,PQ的長l最大=﹣(﹣2﹣(﹣+2

          答:線段PQ的長度lm的關(guān)系式為:l=﹣m2m+2 (﹣2≤m≤1

          當(dāng)m=﹣時,PQ最長,最大值為

          3)①若PQ為平行四邊形的一邊,則R一定在直線x=﹣2上,如圖:

          PQ的長為0PQ≤的整數(shù),

          PQ1PQ2,

          當(dāng)PQ1時,則DR1,此時,在點D上方有R1(﹣2,﹣2),在點D下方有R2(﹣2,﹣4);

          當(dāng)PQ2時,則DR2,此時,在點D上方有R3(﹣2,﹣1),在點D下方有R4(﹣2,﹣5);

          ②若PQ為平行四邊形的一條對角線,則PQDR互相平分,

          當(dāng)PQ1時,即:x1﹣(x2+2x3)=1,此時x不是整數(shù),

          當(dāng)PQ2時,即x1﹣(x2+2x3)=2,此時x1=﹣1,x20;當(dāng)x1=﹣1,R與點C重合,即R50,﹣3),當(dāng)x20;此時R62,﹣1

          綜上所述,符合條件的點R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R50,﹣3),

          R62,﹣1).

          答:符合條件的點R共有6個,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R50,﹣3R62,﹣1).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時碰到這樣的一道題目:

          如圖1,點O為坐標(biāo)原點,⊙O的半徑為1,點A2,0).動點B在⊙O上,連結(jié)AB,作等邊ABCA,B,C為順時針順序),求OC的最大值.

          (解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側(cè)作等邊三角形BOE,連接AE

          1)請你找出圖中與OC相等的線段,并說明理由;

          2)請直接寫出線段OC的最大值.

          (遷移拓展)

          3)如圖2BC4,點D是以BC為直徑的半圓上不同于BC的一個動點,以BD為邊作等邊ABD,請求出AC的最值,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長為16m,寬為6m,拋物線的最高點C離地面AA1的距離為8m.

          (1)按如圖所示的直角坐標(biāo)系,求表示該拋物線的函數(shù)表達式.

          (2)一大型汽車裝載某大型設(shè)備后,高為7m,寬為4m,如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貸車能否安全通過?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:

          尺規(guī)作圖:過圓外一點作圓的切線.

          已知:PO外一點.

          求作:經(jīng)過點PO的切線.

          小敏的作法如下:

          如圖,

          1)連接OP,作線段OP的垂直平分線MNOP于點C

          2)以點C為圓心,CO的長為半徑作圓,交OAB兩點;

          3)作直線PAPB.所以直線PA,PB就是所求作的切線.

          老師認為小敏的作法正確.

          請回答:連接OAOB后,可證∠OAP=∠OBP90°,其依據(jù)是_____;由此可證明直線PA,PB都是O的切線,其依據(jù)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2+bx+c0

          1)若b2m1m+c=﹣6,判斷方程根的情況;

          2)若方程有兩個相等的非零實數(shù)根,且b2c240,求此時方程的根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O的直徑,C、D是半圓AB的三等分點,過點CAD延長線的垂線CE,垂足為E

          1)求證:CE是⊙O的切線;

          2)若⊙O的半徑為2,求圖中陰影部分的面積.

          3)若弦CNABC的內(nèi)心點M,MN,求CN

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標(biāo)分別為(﹣1,0)、(0,﹣3).

          (1)求拋物線的函數(shù)解析式;

          (2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標(biāo);

          (3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠C=90°,以BC為直徑的⊙OAB于點D,⊙O的切線DEAC于點E

          1)求證:EAC中點;

          2)若AB=10,BC=6,連接CDOE,交點為F,求OF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點A-60),B2,0),點C在直線上,則使ABC是直角三角形的點C的個數(shù)為( 。

          A.1B.2C.3D.4

          查看答案和解析>>

          同步練習(xí)冊答案