【題目】某商店以20元/千克的單價新進(jìn)一批商品,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售單價x(元/千克)之間為一次函數(shù)關(guān)系,如圖所示.
(1)求y與x的函數(shù)表達(dá)式;
(2)要使銷售利潤達(dá)到800元,銷售單價應(yīng)定為每千克多少元?
【答案】(1);(2)40元或60元.
【解析】試題(1)當(dāng)20≤x≤80時,利用待定系數(shù)法即可得到y與x的函數(shù)表達(dá)式;
(2)根據(jù)銷售利潤達(dá)到800元,可得方程(x﹣20)(﹣x+80)=800,解方程即可得到銷售單價.
試題解析:解:(1)當(dāng)0<x<20時,y=60;
當(dāng)20≤x≤80時,設(shè)y與x的函數(shù)表達(dá)式為y=kx+b,把(20,60),(80,0)代入,可得: ,解得:
,∴y=﹣x+80,∴y與x的函數(shù)表達(dá)式為
;
(2)若銷售利潤達(dá)到800元,則(x﹣20)(﹣x+80)=800,解得x1=40,x2=60,∴要使銷售利潤達(dá)到800元,銷售單價應(yīng)定為每千克40元或60元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于二象限內(nèi)的A點和四象限內(nèi)的B點,與x軸將于點C,連接AO,已知AO=2
,tan∠AOC=
,點B的坐標(biāo)為(a,﹣4).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極參與垃圾分類活動,以班級為單位收集可回收的垃圾,下面是七年級各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).
某校七年級各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表
組別(kg) | 頻數(shù) |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值;
(2)已知收集的可回收垃圾以0.8元/kg被回收,該年級這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是( 。
①△ABC與△DEF是位似圖形②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2④△ABC與△DEF的面積比為4:1.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)
(k ≠ 0) 在第一象限內(nèi)的圖象交于點A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點B在反比例函數(shù)的圖象上, 且點B的橫坐標(biāo)為2. 若在x軸上存在一點M,使MA+MB的值最小,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將拋物線平移到頂點恰好落在直線
上,并設(shè)此時拋物線頂點的橫坐標(biāo)為
.
(1)求拋物線的解析式(用含、
的代數(shù)式表示);
(2)如圖②,與拋物線交于
、
、
三點,
,
軸,
,
.
①求的面積(用含
的代數(shù)式表示);
②若的面積為1,當(dāng)
時,
的最大值為-3,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線 經(jīng)過
,
兩點,與
軸相交于點
,連接
.點
為拋物線上一動點,過點
作
軸的垂線
,交直線
于點
,交
軸于點
.
Ⅰ 求拋物線的表達(dá)式;
Ⅱ 當(dāng) 位于
軸右邊的拋物線上運動時,過點
作
直線
,
為垂足.當(dāng)點
運動到何處時,以
,
,
為頂點的三角形與
相似?并求出此時點
的坐標(biāo);
Ⅲ 如圖2,當(dāng)點 在位于直線
上方的拋物線上運動時,連接
,
.請問
的面積
能否取得最大值?若能,請求出最大面積
,并求出此時點
的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com