日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點(diǎn)坐標(biāo)為.由勾股定理得,所以A、B兩點(diǎn)間的距離公式為
          注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
          解答下列問題:

          如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
          (1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
          (2)連結(jié)AB、AC,求證△ABC為直角三角形;
          (3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

          解:(1)由,解得:
          ∴A,B兩點(diǎn)的坐標(biāo)分別為:A(,),B(,)。
          ∵P是A,B的中點(diǎn),由中點(diǎn)坐標(biāo)公式得P點(diǎn)坐標(biāo)為(,3)。
          又∵PC⊥x軸交拋物線于C點(diǎn),將x=代入y=2x2中得y=,
          ∴C點(diǎn)坐標(biāo)為()。
          (2)證明:由兩點(diǎn)間距離公式得:
          ,
          ∴PC=PA=PB。
          ∴∠PAC=∠PCA,∠PBC=∠PCB。
          ∴∠PAC+∠PCB=90°,即∠ACB=90°。∴△ABC為直角三角形。
          (3)如圖,過點(diǎn)C作CG⊥AB于G,過點(diǎn)A作AH⊥PC于H,
          則H點(diǎn)的坐標(biāo)為(,)。
          。

          又直線l與l′之間的距離等于點(diǎn)C到l的距離CG,∴直線l與l′之間的距離為

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況。請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問題。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價(jià)為40元.經(jīng)過市場(chǎng)調(diào)查,一周的銷售量y件與銷售單價(jià)x(x≥50)元/件的關(guān)系如下表:

          銷售單價(jià)x(元/件)

          55
          60
          70
          75

          一周的銷售量y(件)

          450
          400
          300
          250

          (1)直接寫出y與x的函數(shù)關(guān)系式:   . 
          (2)設(shè)一周的銷售利潤(rùn)為S元,請(qǐng)求出S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價(jià)在什么范圍內(nèi)變化時(shí),一周的銷售利潤(rùn)隨著銷售單價(jià)的增大而增大?
          (3)雅安地震牽動(dòng)億萬人民的心,商家決定將商品一周的銷售利潤(rùn)全部寄往災(zāi)區(qū),在商家購(gòu)進(jìn)該商品的貸款不超過10000元情況下,請(qǐng)你求出該商家最大捐款數(shù)額是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對(duì)稱軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.

          (1)求點(diǎn)A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
          (2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo);若不能,說明理由;
          (3)若將“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A(1,0)、B(3,0)兩點(diǎn).

          (1)寫出這個(gè)二次函數(shù)的對(duì)稱軸;
          (2)設(shè)這個(gè)二次函數(shù)的頂點(diǎn)為D,與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)E,連接AD、DE和DB,當(dāng)△AOC與△DEB相似時(shí),求這個(gè)二次函數(shù)的表達(dá)式。
          [提示:如果一個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)為A,那么它的表達(dá)式可表示為:]

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知拋物線y=ax2+bx﹣4經(jīng)過A(﹣8,0),B(2,0)兩點(diǎn),直線x=﹣4交x軸于點(diǎn)C,交拋物線于點(diǎn)D.

          (1)求該拋物線的解析式;
          (2)點(diǎn)P在拋物線上,點(diǎn)E在直線x=﹣4上,若以A,O,E,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
          (3)若B,D,C三點(diǎn)到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請(qǐng)直接寫出d3的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動(dòng)點(diǎn),設(shè)PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

          (1)證明:△PCE是等腰三角形;
          (2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關(guān)系;
          (3)當(dāng)k=4時(shí),求四邊形PEBF的面積S與x的函數(shù)關(guān)系式.x為何值時(shí),S有最大值?并求出S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:直線過拋物線的頂點(diǎn)P,如圖所示.

          (1)頂點(diǎn)P的坐標(biāo)是     ;
          (2)若直線y=ax+b經(jīng)過另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
          (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱,求直線y=mx+n與拋物線的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過點(diǎn)A(4,0)與點(diǎn)(﹣2,6).

          (1)求拋物線的解析式;
          (2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案