日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 15.如圖①,在Rt△ABC中,∠C=90°.將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)得到△A′B′C,旋轉(zhuǎn)角為α,且0°<α<180°.在旋轉(zhuǎn)過程中,點(diǎn)B’可以恰好落在AB的中點(diǎn)處,如圖②.
          (1)求∠A的度數(shù);
          (2)當(dāng)點(diǎn)C到AA′的距離等于AC的一半時,求α的度數(shù).

          分析 (1)利用旋轉(zhuǎn)的性質(zhì)結(jié)合直角三角形的性質(zhì)得出△CBB′是等邊三角形,進(jìn)而得出答案;
          (2)利用銳角三角函數(shù)關(guān)系得出sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,即可得出∠CAD=30°,進(jìn)而得出α的度數(shù).

          解答 解:(1)將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)得到△A′B′C,旋轉(zhuǎn)角為α,
          ∴CB=CB′
          ∵點(diǎn)B′可以恰好落在AB的中點(diǎn)處,
          ∴點(diǎn)B′是AB的中點(diǎn).
          ∵∠ACB=90°,
          ∴CB′=$\frac{1}{2}$AB=BB′,
          ∴CB=CB′=BB′,
          即△CBB′是等邊三角形.
          ∴∠B=60°.
          ∵∠ACB=90°,
          ∴∠A=30°;

          (2)如圖,過點(diǎn)C作CD⊥AA′于點(diǎn)D,
          點(diǎn)C到AA′的距離等于AC的一半,即CD=$\frac{1}{2}$AC.
          在Rt△ADC中,∠ADC=90°,sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,
          ∴∠CAD=30°,
          ∵CA=CA′,
          ∴∠A′=∠CAD=30°.
          ∴∠ACA′=120°,即α=120°.

          點(diǎn)評 此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定等知識,正確掌握直角三角形的性質(zhì)是解題關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          5.甲乙兩地相距900千米,一列快車從甲地出發(fā)勻速開往乙地,速度為120千米/時;快車開出30分鐘時,一列慢車從乙地出發(fā)勻速開往甲地,速度為90千米/時.設(shè)慢車行駛的時間為x小時,快車到達(dá)乙地后停止行駛,根據(jù)題意解答下列問題:
          (1)當(dāng)快車與慢車相遇時,求慢車行駛的時間;
          (2)請從下列(A),(B)兩題中任選一題作答.
          我選擇:(A).
          (A)當(dāng)兩車之間的距離為315千米時,求快車所行的路程;
          (B)①在慢車從乙地開往甲地的過程中,求快慢兩車之間的距離;(用含x的代數(shù)式表示)
          ②若第二列快車也從甲地出發(fā)勻速駛往乙地,速度與第一列快車相同,在第一列快車與慢車相遇后30分鐘時,第二列快車與慢車相遇,直接寫出第二列快車比第一列快車晚出發(fā)多少小時.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          6.如圖,下列圖形是一組按照某種規(guī)律擺放而成的圖案,則圖⑧中圓點(diǎn)的個數(shù)是( 。
          A.64B.65C.66D.67

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          3.如圖,∠1=∠2,AB=AD,AC=AE.請將下面說明∠C=∠E的過程和理由補(bǔ)充完整.
          證明:∵∠1=∠2(已知 ),
          ∴∠1+∠BAE=∠2+∠BAE
          ∴∠1+∠DAC=∠2+∠DAC,
          即∠BAC=∠DAE,
          在△ABC和△ADE中
          $\left\{\begin{array}{l}{AB=AD(已知)}\\{AC=AE(已知)}\end{array}\right.$
          ∴△ABC≌△ADE(SAS)
          ∴∠C=∠E(全等三角形對應(yīng)角相等)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          10.已知二次函數(shù)中x和y的部分對應(yīng)值如下表:
          x-10123
          y0-3-4-30
          (1)求二次函數(shù)的解析式;
          (2)如圖,點(diǎn)P是直線BC下方拋物線上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ABPC的面積最大?求出此時P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積;
          (3)在拋物線上,是否存在一點(diǎn)Q,使△QBC中QC=QB?若存在請直接寫出Q點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          20.如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

          (1)將圖1中的三角板繞點(diǎn)O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
          (2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,求t的值.
          (3)將圖1中的三角板繞點(diǎn)O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請求出差的變化范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          7.計(jì)算:(5x2+15x)÷5x=x+3.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          4.如圖,當(dāng)過O點(diǎn)畫不重合的2條射線時,共組成1個角;當(dāng)過O點(diǎn)畫不重合的3條射線時,共組成3個角;當(dāng)過O
          點(diǎn)畫不重合的4條射線時,共組成6個角;….根據(jù)以上規(guī)律,當(dāng)過O點(diǎn)畫不重合的10條射線時,共組成( 。﹤角.
          A.28B.36C.45D.55

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          5.某校九年級教師在講“解直角三角形”一節(jié)時,帶領(lǐng)一個小組登上學(xué)校教學(xué)樓上的一個平臺,測量與學(xué)校毗鄰的一生活小區(qū)的一棟居民樓AB的高度,平臺C距離地面D高10米,在C處測得居民樓樓底B的俯角為22.5°,樓頂端A的仰角為60°,測完后,記錄好數(shù)據(jù),回到教師,將示意圖畫在黑板上,如圖所示,要求全班學(xué)生按示意圖,求出居民樓AB的高度.(最后結(jié)果精確到0.1)(參考數(shù)據(jù):tan22.5°=$\sqrt{2}$-1,$\sqrt{3}$=1.73,$\sqrt{2}$=1.41)

          查看答案和解析>>

          同步練習(xí)冊答案