日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點C與點A重合,點B落在點B′處(如圖),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請說明理由.

          (2)實踐與應(yīng)用:以點O為坐標(biāo)原點,分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點B的坐標(biāo)為(9,3),請求出折痕EF的長及EF所在直線的函數(shù)關(guān)系式.

          (1)同意,理由見解析;(2),y=3x-12.

          解析試題分析:(1)同意.
          理由:因為AB∥OC,所以∠AEF=∠EFC.根據(jù)折疊性質(zhì),有∠AFE=∠EFC.所以∠AEF=∠AFE,AE=AF.△AEF為等腰三角形.
          (2)過點E作EG⊥OC于點G.設(shè)OF=x,則CF=9-x;由折疊可知:AF=9-x.
          在Rt△AOF中,AF2=AO2+OF2即:32+x2=(9-x)2,解得x=4,AE=AF=9-x=5,F(xiàn)G=OG-OF=5-4=1.在Rt△EFG中,EF2=EG2+FG2=10,求出EF=
          設(shè)直線EF的解析式為y=kx+b(k≠0),因為點E(5,3)和點F(4,0)在直線EF上,所以,代入解得解得k,b,進而求出解析式.
          試題解析:(1)同意.
          理由:∵AB∥OC,∴∠AEF=∠EFC.
          根據(jù)折疊性質(zhì),有∠AFE=∠EFC.
          ∴∠AEF=∠AFE,
          ∴AE=AF.
          ∴△AEF為等腰三角形.
          (2)過點E作EG⊥OC于點G.
          設(shè)OF=x,則CF=9-x;
          由折疊可知:AF=9-x.
          在Rt△AOF中,AF2=AO2+OF2
          ∴32+x2=(9-x)2,
          ∴x=4,9-x=5.
          ∴AE=AF=5,
          ∴FG=OG-OF=5-4=1.
          在Rt△EFG中,
          EF2=EG2+FG2=10,
          ∴EF=
          設(shè)直線EF的解析式為y=kx+b(k≠0),
          ∵點E(5,3)和點F(4,0)在直線EF上,
          ∴3=5k+b,0=4k+b,
          解得:k=3,b=-12.
          ∴y=3x-12.
          考點:1.折疊問題.2.一次函數(shù)的解析式.3.勾股定理.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          某文具店準(zhǔn)備購進甲,乙兩種鋼筆,若購進甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元.
          (1)求購進甲,乙兩種鋼筆每支各需多少元?
          (2)若該文具店準(zhǔn)備拿出1000元全部用來購進這兩種鋼筆,考慮顧客需求,要求購進甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進貨方案?
          (3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計劃用它們生產(chǎn)A、B兩種產(chǎn)品共50件,已知每生產(chǎn)一件A種產(chǎn)品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產(chǎn)一件B種產(chǎn)品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
          (1)利用這些原料,生產(chǎn)A、B兩種產(chǎn)品,有哪幾種不同的方案?
          (2)設(shè)生產(chǎn)兩種產(chǎn)品總利潤為y(元),其中生產(chǎn)A中產(chǎn)品x(件),試寫出y與x之間的函數(shù)解析式.
          (3)利用函數(shù)性質(zhì)說明,采用(1)中哪種生產(chǎn)方案所獲總利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知直線與x軸、y軸分別交于點A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

          (1)求△AOB的面積;
          (2)求點C坐標(biāo);
          (3)點P是x軸上的一個動點,設(shè)P(x,0)
          ①請用x的代數(shù)式表示PB2、PC2;
          ②是否存在這樣的點P,使得|PC-PB|的值最大?如果不存在,請說明理由;
          如果存在,請求出點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          一次函數(shù)y=kx+4的圖象經(jīng)過點(-3,-2),則
          (1)求這個函數(shù)表達式;并畫出該函數(shù)的圖象.
          (2)判斷(-5,3)是否在此函數(shù)的圖象上;
          (3)求把這條直線沿x軸向右平移1個單位長度后的函數(shù)表達式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          國家推行“節(jié)能減排,低碳經(jīng)濟”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費為b元.據(jù)市場調(diào)查知:每輛車改裝前、后的燃料費(含改裝費)(單位:元)與正常運營時間(單位:天)之間分別滿足關(guān)系式:、,如圖所示.

          試根據(jù)圖像解決下列問題:
          (1)每輛車改裝前每天的燃料費=     元,每輛車的改裝費b=    元.正常運營    天后,就可以從節(jié)省燃料費中收回改裝成本.
          (2)某出租汽車公司一次性改裝了100輛車,因而,正常運營多少天后共節(jié)省燃料費40萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點A,且點A的縱坐標(biāo)為1.

          (1)求反比例函數(shù)的解析式;
          (2)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          閱讀材料:若a,b都是非負實數(shù),則.當(dāng)且僅當(dāng)a=b時,“=”成立.
          證明:∵,∴
          .當(dāng)且僅當(dāng)a=b時,“=”成立.
          舉例應(yīng)用:已知x>0,求函數(shù)的最小值.
          解:.當(dāng)且僅當(dāng),即x=1時,“=”成立.
          當(dāng)x=1時,函數(shù)取得最小值,y最小=4.
          問題解決:汽車的經(jīng)濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
          (1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
          (2)求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價為5.2萬元,一套B型“廉租房”的造價為4.8萬元.
          (1)請問有幾種開發(fā)建設(shè)方案?
          (2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?
          (3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低0.7萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時建設(shè)A、B兩種戶型,請你直接寫出再次開發(fā)建設(shè)的方案.

          查看答案和解析>>

          同步練習(xí)冊答案