日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2004•麗水)若關(guān)于x的一元二次方程x2+(m+1)x+m+4=0兩實根的平方和為2,求m的值.
          解:設(shè)方程的兩實根為x1,x2,那么x1+x2=m+1,x1x2=m+4.
          ∴(x12+(x22=( x1+x22-2x1x2=(m+1)2-2(m+4)=m2-7=2,即m2=9,
          解得m=3.
          答:m的值是3.
          請把上述解答過程的錯誤或不完整之處,寫在橫線上,并給出正確解答.
          答:錯誤或不完整之處有:______.
          正確解答:______.
          【答案】分析:此題首先利用一元二次方程的根與系數(shù)的關(guān)系來求出代數(shù)式的值,然后把所求的值代入方程的判別式中檢驗是否使方程有實數(shù)根.
          解答:解:錯誤或不完整之處有:
          ①x1+x2=m+1;②m=3;③沒有用判別式判定方程有無實根.
          解:設(shè)方程的兩實數(shù)根為x1,x2,那么
          x1+x2=-(m+1),x1x2=m+4.
          ∴(x12+(x22=(x1+x22-2x1x2=(m+1)2-2(m+4)
          =m2-7=2,
          ∴m2=9,解得m=±3,
          當m=3時,△=16-28<0,方程無實數(shù)根,m=3(舍去);
          當m=-3時,△=4-4=0,
          ∴m=-3.
          答:m的值是-3.
          點評:1、一元二次方程根的情況與判別式△的關(guān)系:
          (1)△>0?方程有兩個不相等的實數(shù)根;
          (2)△=0?方程有兩個相等的實數(shù)根;
          (3)△<0?方程沒有實數(shù)根.
          2、若一元二次方程有實數(shù)根,則根與系數(shù)的關(guān)系:xl+x2=-,xl•x2=
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《平面直角坐標系》(01)(解析版) 題型:填空題

          (2004•麗水)中國象棋棋盤中蘊含著直角坐標系,右上圖是中國象棋棋盤的一半,棋子“馬”走的規(guī)則是沿“日”形的對角線走,例如:圖中“馬”所在的位置可以直接走到A、B等處.若“馬”的位置在C點,為了到達D點,請按“馬”走的規(guī)則,在右上圖的棋盤上用虛線畫出一種你認為合理的行走路線   

          查看答案和解析>>

          科目:初中數(shù)學 來源:2004年浙江省麗水市中考數(shù)學試卷(解析版) 題型:解答題

          (2004•麗水)為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設(shè)草坪,B校有如圖2的陰影部分空地需鋪設(shè)草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
          求:(1)分別求出圖1、圖2的陰影部分面積;
          (2)請你給出一種草皮運送方案,并求出總運費;
          (3)請設(shè)計總運費最省的草皮運送方案,并說明理由.表如下:
          A校B校
          路程(千米)運費單價(元) 路程(千米) 運費單價(元)
          甲地 20 0.15 10 0.15
          乙地 15 0.20 20 0.20
          (注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

          查看答案和解析>>

          科目:初中數(shù)學 來源:2004年浙江省麗水市中考數(shù)學試卷(解析版) 題型:解答題

          (2004•麗水)若關(guān)于x的一元二次方程x2+(m+1)x+m+4=0兩實根的平方和為2,求m的值.
          解:設(shè)方程的兩實根為x1,x2,那么x1+x2=m+1,x1x2=m+4.
          ∴(x12+(x22=( x1+x22-2x1x2=(m+1)2-2(m+4)=m2-7=2,即m2=9,
          解得m=3.
          答:m的值是3.
          請把上述解答過程的錯誤或不完整之處,寫在橫線上,并給出正確解答.
          答:錯誤或不完整之處有:______.
          正確解答:______.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2004年浙江省麗水市中考數(shù)學試卷(解析版) 題型:填空題

          (2004•麗水)如圖,在△ABC中,D、E分別是AB、AC的中點,若BC=4,則DE的長是   

          查看答案和解析>>

          同步練習冊答案