日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】七巧板是我國祖先的一項卓越創(chuàng)造,如圖正方形ABCD可以制作一副七巧板,現(xiàn)將這副七巧板拼成如圖2風車造型(內(nèi)部有一塊空心),連結(jié)最外圍的風車頂點M、N、P、Q得到一個四邊形MNPQ,則正方形ABCD與四邊形MNPQ的面積之比為( 。

          A.58B.35C.813D.2549

          【答案】C

          【解析】

          本題主要是勾股定理的應用,關(guān)鍵是找出兩個正方形的邊長,與他們邊長有關(guān)的是圖1的對角線AC,圖2中的邊可以轉(zhuǎn)化到MEEQ兩條邊上,統(tǒng)一用相同的字母設出來,然后代入勾股定理公式計算即可.

          解:設ACa+a+a+a4a,則ABBCAC×sin45°2a,

          所以正方形ABCD的面積是(2 a28a2;

          2ME3aEQ2a,

          由勾股定理得:MQa

          所以正方形MNPQ的面積為( a213a2,

          所以圖中正方形ABCDMNPQ的面積比為 =,

          故選:C

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知AB是⊙O的直徑,C是⊙O上的一點(不與點AB重合),過點CAB的垂線交⊙O于點D,垂足為E點.

          1)如圖1,當AE=4BE=2時,求CD的長度;

          2)如圖2,連接AC,BD,點MBD的中點.求證:MEAC

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,要在底邊BC=160cm,高AD=120cm的△ABC鐵皮余料上,截取一個矩形EFGH,使點HAB上,點GAC上,點E,FBC上,ADHG于點M.

          (1)設矩形EFGH的長HG=ycm,寬HE=xcm.求y與x的函數(shù)關(guān)系式;

          (2)當x為何值時,矩形EFGH的面積S最大?最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知AB為半圓O的直徑,P為半圓上的一個動點(不含端點),以OP、OB為一組鄰邊作POBQ,連接OQ、AP,設OQ、AP的中點分別為MN,連接PM、ON

          1)試判斷四邊形OMPN的形狀,并說明理由.

          2)若點P從點B出發(fā),以每秒15°的速度,繞點O在半圓上逆時針方向運動,設運動時間為ts

          ①試求:當t為何值時,四邊形OMPN的面積取得最大值?并判斷此時直線PQ與半圓O的位置關(guān)系(需說明理由);

          ②是否存在這樣的t,使得點Q落在半圓O內(nèi)?若存在,請直接寫出t的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】學校為獎勵在家自主學習有突出表現(xiàn)的學生,決定購買筆記本和鋼筆作為獎品.已知1本筆記本和4支鋼筆共需100元,4本筆記本和6支鋼筆共需190元.

          1)分別求一本筆記本和一支鋼筆的售價;

          2)若學校準備購進這兩種獎品共90份,并且筆記本的數(shù)量不多于鋼筆數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】RtABC中,∠ACB=90°.AC=8,BC=3,點DBC邊上動點,連接AD交以CD為直徑的圓于點E,則線段BE長度的最小值為( )

          A.1B.C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】“某市為處理污水,需要鋪設一條長為4000米的管道,為了盡量減少施工對交通所造成的影響,實際施工時×××××.設原計劃每天鋪設管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應補為(  )

          A.每天比原計劃多鋪設10米,結(jié)果延期20天才完成任務

          B.每天比原計劃少鋪設10米,結(jié)果延期20天才完成任務

          C.每天比原計劃多鋪設10米,結(jié)果提前20天完成任務

          D.每天比原計劃少鋪設10米,結(jié)果提前20天完成任務

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】問題提出

          1)如圖1,已知三角形,請在邊上確定一點,使得的值最。

          問題探究

          2)如圖2,在等腰中,,點邊上一動點,分別過點,點作線段所在直線的垂線,垂足為點,若,求線段的取值范圍,并求的最大值.

          問題解決

          3)如圖3,正方形是一塊蔬菜種植基地,邊長為3千米,四個頂點處都建有一個蔬菜采購點,根據(jù)運輸需要,經(jīng)過頂點處和邊的兩個三等分點之間的某點建設一條向外運輸?shù)目焖偻ǖ,其余三個采購點都修建垂直于快速通道的蔬菜輸送軌道,分別為、、.若你是此次項目設計的負責人,要使三條運輸軌道的距離之和最小,你能不能按照要求進行規(guī)劃,請通過計算說明.

          查看答案和解析>>

          同步練習冊答案