日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線=≠0)與軸交于AB兩點(diǎn),與軸交于C點(diǎn),其對稱軸為=1,且A(-1,0)C(0,2).

          (1)直接寫出該拋物線的解析式;

          (2)P是對稱軸上一點(diǎn),△PAC的周長存在最大值還是最小值?請求出取得最值(最大值或最小值)時(shí)點(diǎn)P的坐標(biāo);

          (3)設(shè)對稱軸與軸交于點(diǎn)H,點(diǎn)D為線段CH上的一動點(diǎn)(不與點(diǎn)CH重合).點(diǎn)P是(2)中所求的點(diǎn).過點(diǎn)D作DE∥PC交軸于點(diǎn)E.連接PDPE.若CD的長為,△PDE的面積為S,求S與之間的函數(shù)關(guān)系式,試說明S是否存在最值,若存在,請求出最值,并寫出S取得的最值及此時(shí)的值;若不存在,請說明理由.

          【答案】(1) =-++2;(2) P(1,);(3)見解析.

          【解析】分析:

          (1)由已知條件易得點(diǎn)B的坐標(biāo)為(3,0),這樣結(jié)合點(diǎn)A、C的坐標(biāo)即可求得拋物線的解析式;

          (2)由題意可知,AC長度是固定值,點(diǎn)A和點(diǎn)B關(guān)于直線x=1對稱,由此可得連接BC交直線x=1于點(diǎn)P,此時(shí)△PAC的周長最小,求得直線BC的解析式,即可求得此時(shí)點(diǎn)P的坐標(biāo);

          (3)如圖2,畫出符合題意的圖形,過點(diǎn)DDF⊥y軸于點(diǎn)F,交對稱軸x=1于點(diǎn)N,在Rt△OCH中易得CH=,Rt△CDF∽Rt△CHO,可將CF、OFFD用含m的代數(shù)式表達(dá)出來,從而可表達(dá)出點(diǎn)D和點(diǎn)N的坐標(biāo),再用待定系數(shù)法求得用含m的代數(shù)式表達(dá)的DE的解析式,即可表達(dá)出點(diǎn)E的坐標(biāo)和點(diǎn)Q的坐標(biāo),然后由S=SPDE=SPDQ+SPEQ=即可得到Sm間的函數(shù)關(guān)系式將所得解析式化簡、配方即可得到所求答案.

          詳解:

          (1)∵拋物線=≠0)與軸交于AB兩點(diǎn),其對稱軸為=1,且A(-1,0),

          點(diǎn)B的坐標(biāo)為(3,0),

          可設(shè)拋物線解析式為,

          拋物線和y軸交于點(diǎn)C(0,2),

          ,解得:,

          ,;

          (2)△PAC的周長有最小值連結(jié)ACBC,

          ∵AC的長度一定,

          ∴要使△PAC的周長最小,就是使PA+PC最小.

          ∵點(diǎn)A關(guān)于對稱軸=1的對稱點(diǎn)是B點(diǎn),

          ∴BC與對稱軸的交點(diǎn)即為所求的點(diǎn)P(如圖2),

          設(shè)直線BC的表達(dá)為:=,則有

          ,解得,∴:=-+2,

          =1代入,=,

          即點(diǎn)P的坐標(biāo)為P(1,),

          ∴△PAC的周長取得最小值,取得最小值時(shí)點(diǎn)P的坐標(biāo)為P(1,;

          (3)如圖2,設(shè)DE對稱軸x=1于點(diǎn)Q,

          Rt△COH,由勾股定理得CH===.

          過點(diǎn)DDF⊥軸于點(diǎn)F,交對稱軸=1于點(diǎn)N,

          ∵Rt△CDF∽Rt△CHO,

          ,

          ∴CF===,OF=CO-CF=2-;

          同樣: ,FD===

          ∴點(diǎn)D的坐標(biāo)為D(,2-,

          N(12-).

          ∵DE∥BC,

          ∴可設(shè)(過點(diǎn)DE的直線):=-+

          D點(diǎn)坐標(biāo)代入其中,- +=2-,

          解得=2-,

          =-+2-,

          點(diǎn)E的縱坐標(biāo)為0,代入其中,解得=3-,

          ∴E(3-,0).

          ∵點(diǎn)Q在對稱軸=1,=1代入,解得=-,

          ∴Q(1,-).

          PQ=-(-)=,DN=1-,

          EH=3--1=2-.

          S=SPDE=SPDQ+SPEQ=PQ·DN+PQ·EH

          =PQ(DN+EH)=·(1-+2-),

          化簡得S=-+,

          可知S是關(guān)于的二次函數(shù).

          S存在最大值.

          配方可得:S=-+,由此可得,S取得最大值為,

          取得最大值時(shí)的值為:=.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校一棟5層的教學(xué)大樓,第一層沒有教室,二至五層,每層樓有6間教室,進(jìn)出這棟大樓共有兩道大小相同的大門和一道小門(平時(shí)小門不開).安全檢查中,對這3道門進(jìn)行了測試:當(dāng)同時(shí)開啟一道大門和一道小門時(shí),3分鐘內(nèi)可以通過540名學(xué)生,若一道大門平均每分鐘比一道小門可多通過60名學(xué)生.

          1)求平均每分鐘一道大門和一道小門各可以通過多少名學(xué)生?

          2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分鐘內(nèi)安全撤離.這棟教學(xué)大樓每間教室平均有45名學(xué)生,問:在緊急情況下只開啟兩道大門是否可行?為什么?3道門都開啟呢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖6,在平面直角坐標(biāo)系中,一次函數(shù)=+1的圖象交軸于點(diǎn)D,與反比例函數(shù)=的圖象在第一象限相交于點(diǎn)A.過點(diǎn)A分別作軸的垂線,垂足為點(diǎn)BC.

          (1)點(diǎn)D的坐標(biāo)為 ;

          (2)當(dāng)AB=4AC時(shí),求值;

          (3)當(dāng)四邊形OBAC是正方形時(shí),直接寫出四邊形ABOD與△ACD面積的比.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知a是最大的負(fù)整數(shù),b-5的相反數(shù),c=,且ab、c分別是點(diǎn)A、B、C在數(shù)軸上對應(yīng)的數(shù).若動點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動,動點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動,點(diǎn)P的速度是每秒3個(gè)單位長度,點(diǎn)Q的速度是每秒1個(gè)單位長度.

          1)求a、b、c的值;

          2P、Q同時(shí)出發(fā),求運(yùn)動幾秒后,點(diǎn)P可以追上點(diǎn)Q?

          3)在(2)的條件下,P、Q出發(fā)的同時(shí),動點(diǎn)M從點(diǎn)C出發(fā)沿?cái)?shù)軸正方向運(yùn)動,速度為每秒6個(gè)單位長度,點(diǎn)M追上點(diǎn)Q后立即返回沿?cái)?shù)軸負(fù)方向運(yùn)動,追上后點(diǎn)M再運(yùn)動幾秒,MQ的距離等于MP距離的兩倍?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一天,某交警巡邏車在東西方向的青年路上巡邏,他從崗?fù)?/span>出發(fā),晚上停留在.規(guī)定向東方向?yàn)檎,向西方向(yàn)樨?fù),當(dāng)天行駛情況記錄如下(單位:千米):

          +5,-8,+10-12,+6,-18+5,-2.

          1處在崗?fù)?/span>的什么方向?距離崗?fù)?/span>多遠(yuǎn)?

          2)若巡邏車每行駛1千米耗油0.1升,這一天共耗油多少升?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算題:

          1)(-14)-(-15 2 23×(1)×0.5.

          3×(5)(用簡便方法計(jì)算) 4 1×(-48

          5)(-10÷×2 +(-43; 6)-12(×[2(3)2]

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市水果批發(fā)部門欲將 A 市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過程中的損耗均為 200 / 時(shí).其它主要參考數(shù)據(jù)如下:

          運(yùn)輸工具

          途中平均速度(千米/ 時(shí))

          運(yùn)費(fèi)(元/ 千米)

          裝卸費(fèi)用(元)

          火車

          100

          15

          2000

          汽車

          80

          20

          900

          運(yùn)輸過程中,火車因多次臨時(shí)停車,全程在路上耽誤 2 小時(shí) 45 分鐘,火車的總支出費(fèi)用與汽車的總支出費(fèi)用相同,請問某市與本地的路程是多少千米?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在平面直角坐標(biāo)系中,拋物線x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C. 已知A,C兩點(diǎn)的坐標(biāo)分別為A(-4,0), C(0,4).

          (1)求拋物線的表達(dá)式;

          (2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對稱軸左邊),且PQAO,PQ=2AO,求P,Q的坐標(biāo);

          (3)動點(diǎn)M在直線y=x+4上,且ABCCOM相似,求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB、AC的中點(diǎn),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°到△A1BC1的位置,則整個(gè)旋轉(zhuǎn)過程中線段OH所掃過部分的面積(即陰影部分面積)為_____

          查看答案和解析>>

          同步練習(xí)冊答案