日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•邢臺(tái)一模)在圖1-3中,四邊形ABCD和CGEF都是正方形,M是AE的中點(diǎn).

          (1)如圖1,點(diǎn)G在BC延長線上,求證:DM=MF;
          (2)在圖1的基礎(chǔ)上,將正方形CGEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到圖2位置,此時(shí)點(diǎn)E在BC延長線上.求證:DM=MF;
          (3)在圖2的基礎(chǔ)上,將正方形CGEF繞點(diǎn)C在任一旋轉(zhuǎn)一個(gè)角度到如圖3位置,此時(shí)DM和MF還相等嗎?(不必說明理由)
          分析:(1)延長DM到N,證明△AMD≌△EMN,得到DM=MN,M為直角三角形DFN的斜邊DN中點(diǎn),得到2FM=DN,MF=MD;
          (2)延長DM到N,使MN=MD,連接FD、FN、EN,延長EN與DC延長線交于點(diǎn)H.證明△DCF≌△NEF,即可得到線段MD,MF的位置及數(shù)量關(guān)系.
          (3)旋轉(zhuǎn)的過程中,△AMD≌△EMN仍然成立,故結(jié)論仍成立.
          解答:解:(1)MD=MF
          證明:延長DM交FE于N.
          ∵正方形ABCD、CGEF,
          ∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,
          ∴∠MAD=∠NEM.
          又∵M(jìn)A=ME,∠AMD=∠NME,
          ∴△AMD≌△EMN,
          ∴DM=MN,
          ∴M為直角三角形DFN的中點(diǎn),
          ∴2FM=DN
          ∴MF=MD.


          (2)延長DM到N,
          使MN=MD,連接FD、FN、EN,
          延長EN與DC延長線交于點(diǎn)H.
          ∵M(jìn)A=ME,∠AMD=∠EMN,MD=MN,
          ∴△AMD≌△EMN,
          ∴∠DAM=∠MEN,AD=NE.
          又∵正方形ABCD、CGEF,
          ∴CF=EF,AD=DC,∠ADC=90°,
          ∠CFE=∠ADC=∠FEG=∠FCG=90°.
          ∴DC=NE.
          ∵∠DAM=∠MEN,
          ∴AD∥EH.
          ∴∠H=∠ADC=90°.
          ∵∠G=90°,∠HIC=∠GIE,
          ∴∠HCI=∠IEG.
          ∵∠HCI+∠DCF=∠IEG+∠FEN=90°,
          ∴∠DCF=∠FEN.
          ∵FC=FE,
          ∴△DCF≌△NEF,
          ∴FD=FN,∠DFC=∠NFE.
          ∵∠CFE=90°,
          ∴∠DFN=90°,
          ∴FM⊥MD,MF=MD.

          (3)相等.
          點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì)--旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•邢臺(tái)一模)據(jù)統(tǒng)計(jì),收視“2010年春節(jié)聯(lián)歡晚會(huì)”節(jié)目的觀眾達(dá)78 500 000人,78 500 000用科學(xué)記數(shù)法表示為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•邢臺(tái)一模)在圖中,各幾何體都是由大小相同的小正方體按一定規(guī)律壘成的,那么,第n(n≥1)個(gè)幾何體中,小正方體的個(gè)數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•邢臺(tái)一模)已知a=-2,b=1,求(1+
          1ab-1
          )×(a2b2-2ab+1)的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•邢臺(tái)一模)在平面直角坐標(biāo)系中,拋物線y=ax2-6x+c經(jīng)過點(diǎn)(0,10)和點(diǎn)(3,1).
          (1)求這條拋物線的函數(shù)表達(dá)式,并求出它的對(duì)稱軸;
          (2)如圖,△ABC的頂點(diǎn)B在拋物線y=ax2-6x+c上,頂點(diǎn)C在y軸上,頂點(diǎn)A在x軸上,且BC=1,∠ABC=90°,求AC的長;
          (3)△ABC的頂點(diǎn)B沿拋物線y=ax2-6x+c移動(dòng),移動(dòng)過程中,邊BC與x軸保持平行,當(dāng)△ABC被x軸分成上下兩部分的面積比為3:1時(shí),求點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案