日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方形ABCD中,點(diǎn)PCD邊上一動點(diǎn),連接PA,分別過點(diǎn)BD、,垂足分別為EF

          如圖,請?zhí)骄?/span>BEDF、EF這三條線段的長度具有怎樣的數(shù)量關(guān)系?

          若點(diǎn)PDC的延長線上,如圖,那么這三條線段的長度之間又具有怎樣的數(shù)量關(guān)系?

          若點(diǎn)PCD的延長線上,如圖,請直接寫出結(jié)論.

          【答案】(1);(2);(3)

          【解析】

          試題(1)在圖①中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:BE-DF=EF,理由為:由BE垂直于AP,DF垂直于AP,得到一對直角相等,再由四邊形ABCD為正方形,得到AB=AD,且∠BAD為直角,利用同角的余角相等得到一對角相等,利用AAS得到三角形ABE與三角形DFA全等,利用全等三角形對應(yīng)邊相等得到BE=AF,AE=DF,根據(jù)AF-AE=EF,等量代換即可得證;(2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:DF-BE=EF,理由同(1);(3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:DF+BE=EF,理由同(1).

          試題解析:(1)在圖①中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:BE-DF=EF;

          證明:∵BEPA,DFPA,

          ∴∠BEA=AFD=90°,

          ∵四邊形ABCD是正方形,

          AB=AD,BAD=90°,

          ∴∠BAE+DAF=90°,

          又∵∠AFD=90°,

          ∴∠ADF+DAF=90°,

          ∴∠BAE=ADF,

          BAEADF中,

          ∴△BAE≌△ADF(AAS),

          BE=AF,AE=DF,

          AE-AF=EF,

          DF-BE=EF.

          (2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:DF-BE=EF;

          BEPA,DFPA,

          ∴∠BEA=AFD=90°,

          ∵四邊形ABCD是正方形,

          AB=AD,BAD=90°,

          ∴∠BAE+DAF=90°,

          又∵∠AFD=90°,

          ∴∠ADF+DAF=90°,

          ∴∠BAE=ADF,

          BAEADF中,

          ∴△BAE≌△ADF(AAS),

          BE=AF,AE=DF,

          AE-AF=EF,

          DF-BE=EF.

          (3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關(guān)系:DF+BE=EF,

          理由為:∵BEPA,DFPA,

          ∴∠BEA=AFD=90°,

          ∵四邊形ABCD是正方形,

          AB=AD,BAD=90°,

          ∴∠BAE+DAF=90°,

          又∵∠AFD=90°,

          ∴∠ADF+DAF=90°,

          ∴∠BAE=ADF,

          BAEADF中,

          ∴△BAE≌△ADF(AAS),

          BE=AF,AE=DF,

          AE+AF=EF,

          DF+BE=EF.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,數(shù)軸上兩定點(diǎn)A、B對應(yīng)的數(shù)分別為-1814,現(xiàn)在有甲、乙兩只電子螞蟻分別從AB同時出發(fā),沿著數(shù)軸爬行,速度分別為每秒1.5個單位和1.7個單位,它們第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此規(guī)律,則它們第一次相遇所需的時間為(

          A. 55 B. 190 C. 200 D. 210

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】國家推行“節(jié)能減排低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種“CNG”改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b,據(jù)市場調(diào)查知每輛車改裝前、后的燃料費(fèi)含改裝費(fèi)y0,y1與正常運(yùn)營時間x之間分別滿足關(guān)系式y0=ax,y1=b+50x圖象如圖所示

          1每輛車改裝前每天的燃料費(fèi)a= ,每輛車的改裝費(fèi)b= ,正常運(yùn)營時間 天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;

          2某出租汽車公司一次性改裝了100輛出租車因而正常運(yùn)行多少天后共節(jié)省燃料費(fèi)40萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-3,0),點(diǎn)B軸上,直線y=-2x+a經(jīng)過點(diǎn)B軸交于點(diǎn)(0, 6),直線AD與直線y=-2x+a相交于點(diǎn)D(-1,n).

          (1)求直線AD的表達(dá)式;

          (2)點(diǎn)M是直線y=-2x+a上的一點(diǎn)(不與點(diǎn)B重合),且點(diǎn)M的橫坐標(biāo)為m,求△ABM的面積Sm之間的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點(diǎn)M為直線AB上一動點(diǎn), 都是等邊三角形,連接BN

          求證: ;

          分別寫出點(diǎn)M在如圖2和圖3所示位置時,線段ABBM、BN三者之間的數(shù)量關(guān)系不需證明;

          如圖4,當(dāng)時,證明:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.

          (1)求證:△ABC為直角三角形.

          (2)求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當(dāng)小明從燈甲底部向燈乙底部直行16米時,發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為(
          A.7米
          B.8米
          C.9米
          D.10米

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,AB=nAD,點(diǎn)E,F(xiàn)分別在邊AB,AD上且不與頂點(diǎn)A,B,D重合,∠AEF=∠BCE,圈O過A,E,F(xiàn)三點(diǎn).
          (1)求證:圈O與CE相切與點(diǎn)E;
          (2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
          (3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

          求證:∠A+C=180°.

          查看答案和解析>>

          同步練習(xí)冊答案