日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.

          (1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

          ①求拋物線的解析式;

          ②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

          (2)如圖2,若把橋看做是圓的一部分.

          ①求圓的半徑;

          ②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

          【答案】(1;10;(214.5;

          【解析】試題分析:(1利用待定系數(shù)法求函數(shù)解析式即可;根據(jù)題意得出y=3時(shí),求出x的值即可;

          2構(gòu)造直角三角形利用BW2=BC2+CW2,求出即可;

          RT△WGF中,由題可知,WF=14.5,WG=14.5﹣1=13.5,根據(jù)勾股定理知:GF2=WF2﹣WG2,求出即可.

          試題解析:(1設(shè)拋物線解析式為: ,橋下水面寬度AB20米,高CD4米,A﹣100),B10,0),D0,4),,解得: ,拋物線解析式為: ;

          ②∵要使高為3米的船通過(guò),,則,解得: EF=10米;

          2設(shè)圓半徑r米,圓心為W,BW2=BC2+CW2,,解得: ;

          RTWGF中,由題可知,WF=14.5WG=14.5﹣1=13.5,根據(jù)勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=,此時(shí)寬度EF=米.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,長(zhǎng)方體底面是長(zhǎng)為2cm 寬為1cm的長(zhǎng)方形,其高為8cm.

          (1)如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,請(qǐng)利用側(cè)面展開(kāi)圖計(jì)算所用細(xì)線最短需要多少?

          (2)如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果一個(gè)三角形的兩邊長(zhǎng)分別為2和5,則第三邊長(zhǎng)可能是( 。
          A.2
          B.3
          C.5
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知點(diǎn)A是一次函數(shù)x0)圖象上一點(diǎn),過(guò)點(diǎn)Ax軸的垂線l,Bl上一點(diǎn)(BA上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)x0)的圖象過(guò)點(diǎn)B,C,若△OAB的面積為6,則△ABC的面積是______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點(diǎn)A,過(guò)點(diǎn)A作AH⊥x 軸于點(diǎn)H,在拋物線y=x2(x>0)上取一點(diǎn)P,在y軸上取一點(diǎn)Q,使得以P、O、Q為頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量y(件)與每件銷(xiāo)售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

          x

          30

          32

          34

          36

          y

          40

          36

          32

          28

          (1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫(xiě)出自變量x的取值范圍);

          (2)如果商店銷(xiāo)售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?

          (3)設(shè)該商店每天銷(xiāo)售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷(xiāo)售價(jià)定為多少元時(shí)利潤(rùn)最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】8分如圖,AOB、COD是等腰直角三角形點(diǎn)D在AB上

          1求證:AOC≌△BOD;

          2若AD=3,BD=1,求CDABC的面積

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的邊長(zhǎng)為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長(zhǎng)為( )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某日孫老師佩戴運(yùn)動(dòng)手環(huán)進(jìn)行快走鍛煉,兩次鍛煉后數(shù)據(jù)如下表.與第一次鍛煉相比,孫老師第二次鍛煉步數(shù)增長(zhǎng)的百分率是其平均步長(zhǎng)減少的百分率的3倍.根據(jù)經(jīng)驗(yàn)已知孫老師第二次鍛煉時(shí)平均步長(zhǎng)減少的百分率小于0.5.

          項(xiàng)目

          第一次鍛煉

          第二次鍛煉

          步數(shù)(步)

          10000

          平均步長(zhǎng)(米/步)

          0.6

          距離(米)

          6000

          7020

          注:步數(shù)×平均步長(zhǎng)=距離.

          (1)求孫老師第二次鍛煉時(shí)平均步長(zhǎng)減少的百分率;

          (2)孫老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求孫老師這500米的平均步長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案