日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=$\frac{4}{5}$,點(diǎn)E在對(duì)角線AC上,且CE=AD,BE的延長(zhǎng)線與射線AD、射線CD分別相交于點(diǎn)F、G,設(shè)AD=x,△AEF的面積為y.
          (1)求證:∠DCA=∠EBC;
          (2)如圖,當(dāng)點(diǎn)G在線段CD上時(shí),求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
          (3)如果△DFG是直角三角形,求△AEF的面積.

          分析 (1)由AD與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,再由AD=CE,AC=BC,利用SAS可得△DCA≌△ECB,由全等三角形的性質(zhì)可得結(jié)論;
          (2)由AD與BC平行,得到三角形AEF與三角形CEB相似,由相似得比例表示出AF,過(guò)E作EH垂直于AF,根據(jù)銳角三角函數(shù)定義表示出EH,進(jìn)而表示出y與x的函數(shù)解析式,并求出x的范圍即可;
          (3)分兩種情況考慮:①當(dāng)∠FDG=90°時(shí),如圖2所示,在直角三角形ACD中,利用銳角三角函數(shù)定義求出AD的長(zhǎng),即為x的值,代入求出y的值,即為三角形AEF面積;②當(dāng)∠DGF=90°時(shí),過(guò)E作EM⊥BC于點(diǎn)M,如圖3所示,由相似列出關(guān)于x的方程,求出方程的解得到x的值,進(jìn)而求出y的值,即為三角形AEF面積.

          解答 (1)證明:∵AD∥BC,
          ∴∠DAC=∠ECB,
          在△DCA和△ECB中,
          $\left\{\begin{array}{l}{AD=CE}&{\;}\\{∠DAC=∠ECB}&{\;}\\{AC=BC}&{\;}\end{array}\right.$,
          ∴△DCA≌△ECB(SAS),
          ∴∠DCA=∠EBC;
          (2)∵AD∥BC,
          ∴△AEF∽△CEB,
          ∴$\frac{AF}{BC}=\frac{AE}{CE}$,即$\frac{AF}{10}=\frac{10-x}{x}$,
          解得:AF=$\frac{10(10-x)}{x}$,
          作EH⊥AF于H,如圖1所示,

          ∵cos∠ACB=$\frac{4}{5}$,
          ∴EH=$\frac{3}{5}$AE=$\frac{3}{5}$(10-x),
          ∴y=S△AEF=$\frac{1}{2}$×$\frac{3}{5}$(10-x)×$\frac{10(10-x)}{x}$=$\frac{3(10-x)^{2}}{x}$,
          ∴y=$\frac{3{x}^{2}-60x+300}{x}$,
          ∵點(diǎn)G在線段CD上,
          ∴AF≥AD,即$\frac{10(10-x)}{x}$≥x,
          ∴x≤5$\sqrt{5}$-5,
          ∴0<x≤5$\sqrt{5}$-5,
          ∴y關(guān)于x的函數(shù)解析式為:y=$\frac{3{x}^{2}-60x+300}{x}$,(0<x≤5$\sqrt{5}$-5);
          (3)分兩種情況考慮:
          ①當(dāng)∠FDG=90°時(shí),如圖2所示:

          在Rt△ADC中,AD=AC×$\frac{4}{5}$=8,即x=8,
          ∴S△AEF=y=$\frac{3×(10-8)^{2}}{8}$=$\frac{3}{2}$;
          ②當(dāng)∠DGF=90°時(shí),過(guò)E作EM⊥BC于點(diǎn)M,如圖3所示,

          由(1)得:CE=AF=x,
          在Rt△EMC中,EM=$\frac{3}{5}$x,MC=$\frac{4}{5}$x,
          ∴BM=BC-MC=10-$\frac{4}{5}$x,
          ∵∠GCE=∠GBC,∠EGC=∠CGB,
          ∴△CGE∽△BGC,
          ∴$\frac{CE}{CB}$=$\frac{CG}{BG}$,即$\frac{x}{10}$=$\frac{CG}{BG}$,
          ∵∠EBM=∠CBG,∠BME=∠BGC=90°,
          ∴△BME∽△BGC,
          ∴$\frac{CG}{BG}$=$\frac{EM}{BM}$=$\frac{\frac{3}{5}x}{10-\frac{4}{5}x}$,
          ∴$\frac{x}{10}$=$\frac{\frac{3}{5}x}{10-\frac{4}{5}x}$,即x=5,
          此時(shí)y=$\frac{3×(10-5)^{2}}{5}$=15,
          綜上,此時(shí)△AEF的面積為$\frac{3}{2}$或15.

          點(diǎn)評(píng) 此題屬于相似型綜合題,涉及的知識(shí)有:平行線的判定,全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,利用了分類討論的思想,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          18.為完成下列任務(wù),最適合用普查的是(  )
          A.了解全國(guó)七年級(jí)學(xué)生的視力情況B.對(duì)乘坐高鐵的乘客進(jìn)行安檢
          C.了解一批電視機(jī)的使用壽命D.檢測(cè)汾河某段水域的水質(zhì)情況

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          19.某精品店購(gòu)進(jìn)甲、乙兩種小禮品,已知1件甲禮品的進(jìn)價(jià)比1件乙禮品的進(jìn)價(jià)多1元,購(gòu)進(jìn)2件甲禮品與1件乙禮品共需11元.
          (1)求甲禮品的進(jìn)價(jià);
          (2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),若甲禮品按6元/件銷售,則每天可賣(mài)40件;若按5元/件銷售,則每天可賣(mài)60件.假設(shè)每天銷售的件數(shù)y(件)與售價(jià)x(元/件)之間滿足一次函數(shù)關(guān)系,求y與x之間的函數(shù)解析式;
          (3)在(2)的條件下,當(dāng)甲禮品的售價(jià)定為多少時(shí),才能使每天銷售甲禮品的利潤(rùn)為60元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          16.我們把一個(gè)半圓與二次函數(shù)圖象的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn)(半圓與二次函數(shù)圖象的連接點(diǎn)除外),那么這條直線叫做“蛋圓”的切線.如圖,二次函數(shù)y=x2-2x-3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)D,AB為半圓直徑,半圓圓心為點(diǎn)M,半圓與y軸的正半軸交于點(diǎn)C.
          (1)求點(diǎn)C的坐標(biāo);
          (2)分別求出經(jīng)過(guò)點(diǎn)C和點(diǎn)D的“蛋圓”的切線的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          3.如圖,∠1=∠2,AB=AD,AC=AE.請(qǐng)將下面說(shuō)明∠C=∠E的過(guò)程和理由補(bǔ)充完整.
          證明:∵∠1=∠2(已知 ),
          ∴∠1+∠BAE=∠2+∠BAE
          ∴∠1+∠DAC=∠2+∠DAC,
          即∠BAC=∠DAE,
          在△ABC和△ADE中
          $\left\{\begin{array}{l}{AB=AD(已知)}\\{AC=AE(已知)}\end{array}\right.$
          ∴△ABC≌△ADE(SAS)
          ∴∠C=∠E(全等三角形對(duì)應(yīng)角相等)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          13.已知:△ABC,∠ABC=90°,tan∠BAC=$\frac{1}{2}$,點(diǎn)D點(diǎn)在AC邊的延長(zhǎng)線上,且DB2=DC•DA(如圖).
          (1)求$\frac{DC}{CA}$的值;
          (2)如果點(diǎn)E在線段BC的延長(zhǎng)線上,聯(lián)結(jié)AE.過(guò)點(diǎn)B作AC的垂線,交AC于點(diǎn)F,交AE于點(diǎn)G.
          ①如圖1,當(dāng)CE=3BC時(shí),求$\frac{BF}{FG}$的值;
          ②如圖2,當(dāng)CE=BC時(shí),求$\frac{{S}_{△BCD}}{{S}_{△BEG}}$的值;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          20.如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

          (1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問(wèn):此時(shí)直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由.
          (2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,求t的值.
          (3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過(guò)程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)求出差的變化范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          17.如圖,某長(zhǎng)方體的表面展開(kāi)圖的面積為430,其中BC=5,EF=10,則AB=11.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          18.已知反比例函數(shù)y=$\frac{1-2m}{x}$的圖象上有兩點(diǎn)A(x1,y1),B(x2,y2),當(dāng)x1<0<x2時(shí),有y1<y2,則m的取值范圍是(  )
          A.m<0B.m>0C.m<$\frac{1}{2}$D.m>$\frac{1}{2}$

          查看答案和解析>>

          同步練習(xí)冊(cè)答案