日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】綜合題
          (1)【閱讀發(fā)現(xiàn)】如圖①,在△ABC中,∠ACB=45°,AD⊥BC于點D,E為AD上一點,且DE=BD,可知AB=CE.

          (2)【類比探究】如圖②,在正方形ABCD中,對角線AC與BD交于點O,E是OC上任意一點,AG⊥BE于點G,交BD于點F.判斷AF與BE的數(shù)量關(guān)系,并加以證明.

          (3)【推廣應(yīng)用】在圖②中,若AB=4,BF= ,則△AGE的面積為

          【答案】
          (1)

          解:∵AD⊥BC,∠ACB=45°,

          ∴∠ADB=∠CDE=90°,△ACD是等腰直角三角形,

          ∴AD=CD,

          在△ABD和△CED中, ,

          ∴△ABD≌△CED(SAS),

          ∴AB=CE;


          (2)

          解:AF=BE;理由如下:

          ∵正方形ABCD中,AB=BC=AD,∠BAD=90°,∠ABF=∠BCE=45°,AC⊥BD,OA=OB=OC,

          ∵AG⊥BE,

          ∴∠FAD+∠AFO=90°,

          ∵AG⊥BE,

          ∴∠FAO+∠AEG=90°,

          ∴∠AFO=∠AEG,

          ∵∠AFB=∠FAO+90°,

          ∴∠AFB=∠BEC,

          在△ABF和△BCE中, ,

          ∴△ABF≌△BCE(AAS),

          ∴AF=BE;


          (3)
          【解析】【推廣應(yīng)用】解:∵AB=AD=4,∠BAD=90°,
          ∴BD= =4
          ∴OA=OB=OC= BD=2 ,
          ∵BF= ,
          ∴OF=OB﹣BF=
          ∴AF= = ,
          由角的互余性質(zhì)得:∠OAF=∠OBE,
          在△OBE和△OAF中,
          ∴△OBE≌△OAF(ASA),
          ∴OE=OE= ,
          ∴AE=OA+OE=3 ,
          ∵∠OAF=∠GAE,∠AOF=∠AGE=90°,
          ∴△AOF∽△AGE,
          ,即
          解得:GE= ,AG= ,
          ∴△AGE的面積= AGGE= × × = ;
          所以答案是:
          【考點精析】掌握等腰直角三角形和勾股定理的概念是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)戶承包種植某水果,今年投資30 000元,收獲水果20 000千克.此水果在市場上的售價為每千克元,賣給到果園收購的商販每千克元(.若農(nóng)戶將水果拉到市場上出售,則平均每天可售1000千克,需雇傭2人,每人每天付工資150元,運輸及其他稅費平均每天200元.

          (1)分別用含的代數(shù)式表示兩種出售方式的純收入.

          (2)若,且兩種出售方式在相同的時間內(nèi)售完全部水果.請通過計算說明哪種出售方式較好.

          (3)該農(nóng)戶總結(jié)今年的種植及銷售的經(jīng)驗,加強果園管理,力爭明年純收入達(dá)到100000元,則與(2)中今年較好的出售方式的純收入相比,明年的純收入的增長率是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】復(fù)習(xí)全等三角形的知識時,老師布置了一道作業(yè)題:

          如圖①,已知,ABC中,AB=AC,PABC內(nèi)任意一點,AP繞點A順時針旋轉(zhuǎn)至AQ,使∠QAP=BAC,連接BQ,CP,BQ=CP.”

          小亮是個愛動腦筋的同學(xué),他通過對圖①的分析,證明了ABQ≌△ACP,從而證得BQ=CP之后他將點P移到等腰三角形ABC,原題中其他條件不變發(fā)現(xiàn)“BQ=CP”仍然成立,請你就圖②給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,AB=AC=2,BC邊上有10個不同的點P1,P2,……,P10, (i = 1,2,……,10),那么 M1+M2+……+M10的值為(

          A. 4 B. 14 C. 40 D. 不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,AB=15,動點P從點A出發(fā),沿AC→CB→BA邊運動,點P在AC、CB、BA邊上運動的速度分別為每秒3、4、5個單位,直線l從與AC重合的位置開始,以每秒 個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運動.

          (1)當(dāng)t=秒時,△PCE是等腰直角三角形;
          (2)當(dāng)點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應(yīng)點P1落在EF上,點F的對應(yīng)點為F1 , 當(dāng)EF1⊥AB時,求t的值;
          (3)作點P關(guān)于直線EF的對稱點Q,在運動過程中,若形成的四邊形PEQF為菱形,求t的值;
          (4)在整個運動過程中,設(shè)△PEF的面積為S,請直接寫出S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了測量出大樓AB的高度,從距離樓底B處50米的點C(點C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進20米到達(dá)點D,在點D處測得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:如圖1,點MN把線段AB分割成AM,MNBN,若以AMMN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.

          請解決下列問題:

          (1)已知點M,N是線段AB的勾股分割點,且BN>MN>AM.若AM=2,MN=3,求BN的長;

          (2)如圖2,若點F、M、N、G分別是AB、AD、AE、AC邊上的中點,點D,E是線段BC的勾股分割點,且EC>DE>BD,求證:點MN是線段FG的勾股分割點.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲進行了10次射擊訓(xùn)練,平均成績?yōu)?/span>9環(huán),且前9次的成績(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.

          (1)求甲第10次的射擊成績;

          (2)求甲這10次射擊成績的方差;

          (3)乙在相同情況下也進行了10次射擊訓(xùn)練,平均成績?yōu)?/span>9環(huán),方差為1.6環(huán)2,請問甲和乙哪個的射擊成績更穩(wěn)定?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將一個正方體的表面全涂上顏色.

          (1)如果把正方體的棱2等分,然后沿等分線把正方體切開,能夠得到8個小正方體,設(shè)其中3面被涂上顏色的有a個,則a=   ;

          (2)如果把正方體的棱三等分,然后沿等分線把正方體切開,能夠得到27個小正方體.設(shè)這些小正方體中有3個面涂有顏色的有a個,各個面都沒有涂色的有b個,則a+b=   ;

          (3)如果把正方體的棱4等分,然后沿等分線把正方體切開,能夠得到64個小正方體.設(shè)這些小正方體中有2個面涂有顏色的有c個,各個面都沒有涂色的有b個,則c+b=   ;

          (4)如果把正方體的棱n等分,然后沿等分線把正方體切開,能夠得到   個小正方體.設(shè)這些小正方體中有2個面涂有顏色的有c個,各個面都沒有涂色的有b個,則c+b=   

          查看答案和解析>>

          同步練習(xí)冊答案