日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直角梯形ABCD置于平面直角坐標(biāo)系中,BC與x軸重合,點(diǎn)A在y軸上,且AD∥BC,AD=CD,若sin∠ABO=數(shù)學(xué)公式,梯形ABCD的面積為60.
          (1)求直線AB的解析式;
          (2)若點(diǎn)P從點(diǎn)A出發(fā),沿AB向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)速度為每秒3個(gè)單位長(zhǎng)度,過(guò)點(diǎn)P作AB的垂線交x軸于點(diǎn)E交y軸于點(diǎn)F,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,線段EF長(zhǎng)為y,求y與t的函數(shù)關(guān)系式(直接寫(xiě)出自變量t的取值范圍);
          (3)在(2)的條件下,連接DE、DF,當(dāng)cos∠EDF=數(shù)學(xué)公式時(shí),求t的值.

          解:(1)∵梯形ABCD是直角梯形,且AD∥BC,∠D=90°,AD=CD,
          ∴四邊形ADCO為正方形,
          ∴AD=OA=OC.
          又∵sin∠ABO=
          =,
          =,
          ∴OA=OB,
          ∴S梯形ABCD=(AD+OB+OC)•OA=×OB×OB=60,
          ∴OB=8,
          ∴OA=6,
          ∴A(0,6),B(-8,0).
          設(shè)直線AB的解析式為:y=kx+b(k≠0),則

          解得,
          故直線AB的解析式為:y=x+6;

          (2)∵OA=6,OB=8,
          ∴AB==10.
          ∵PE⊥AB,
          ∴cos∠PAF==,即=,
          解得,AF=5t.
          ∴根據(jù)勾股定理求得PF=4t.
          ∴cos∠OFE=cos∠PFA,即=
          =,
          ∴y=-t+(0≤t<);

          (3)∵=,
          =,即OE=(6-5t),
          ∴CE=OC-OE=6-(6-5t)=+t.
          ∵cos∠EDF=,cos∠EDF是銳角,
          ∴cos∠EDF=45°.
          ∵∠ADF+∠CDE=45°,
          ∴點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)與點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)重合,即圖中的點(diǎn)G,
          ∴AF+CE=FG+CG=EF,即AF+CE=EF.
          ∴5t++t=-t+,
          解得t=
          分析:(1)易證四邊形ADCO為正方形,然后由正弦三角函數(shù)的定義、勾股定理求得線段OB與OA的數(shù)量關(guān)系,最后由梯形的面積公式求得OA、OB的長(zhǎng)度.由待定系數(shù)法求得直線AB的解析式;
          (2)由(1)中OA、OB的長(zhǎng)度,利用勾股定理求得AB=10;然后利用三角函數(shù)的定義求得AF=5t、PF=4t;最后根據(jù)對(duì)頂角相等、余弦三角函數(shù)的定義求得y與t的函數(shù)關(guān)系式.定義域由y所表示的實(shí)際意義來(lái)確定;
          (3)易證得∠EDF=45°.又因?yàn)椤螦DF+∠CDE=45°,所以AF+CE=EF.
          點(diǎn)評(píng):本題考查了一次函數(shù)綜合題.其中涉及到的知識(shí)點(diǎn)有勾股定理、解直角三角形、待定系數(shù)法求一次函數(shù)的解析式、梯形的面積公式等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
          (1)求證:AD=BE;
          (2)試判斷△ABF的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)延長(zhǎng)FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
          (1)求證:BC=CD;
          (2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫(huà)出符合條件的大致圖形,并求出AE:EB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)若EF=6,求梯形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案