日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙O中,PC切⊙O于點(diǎn)C,連PO交于⊙O點(diǎn)A、B,點(diǎn)F是⊙O上一點(diǎn),連PF,CDAB于點(diǎn)D,AD=2,CD=4,則PF:DF的值是(

          A. 2 B. C. 5:3 D. 4:3

          【答案】C

          【解析】

          連接AC、OC、OF、BC.由ADC∽△CDB,推出,求出DB、OA、OD,由ODC∽△OCP,推出,推出OC2=ODOP,推出OF2=ODOP,即,由∠DOF=POF,推出DOF∽△FOP,可得.

          連接AC、OC、OF、BC.如圖所示:

          AB是直徑,

          ∴∠ACB=90°,

          CDAB,

          ∴∠ADC=BDC=90°,

          ∴∠ACD+CAD=90°,ACD+BCD=90°,

          ∴∠CAD=BCD,

          ∴△ADC∽△CDB,

          ,

          ,

          DB=8,OA=OB=5,OD=3,

          PC是切線,

          OCPC,

          ∵∠DOC=POC,ODC=OCP,

          ∴△ODC∽△OCP,

          OC2=ODOP,

          OF2=ODOP,

          ,

          ∵∠DOF=POF,

          ∴△DOF∽△FOP,

          故選:C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】正方形ABCD和正方形AEFG的邊長分別為2點(diǎn)B在邊AG,點(diǎn)D在線段EA的延長線上連接BE

          (1)如圖1,求證DGBE;

          (2)如圖2,將正方形ABCD繞點(diǎn)A按逆時針方向旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時,求線段BE的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

          (1)求證:AB是⊙O的切線.

          (2)已知AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD=,求的值.

          (3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“共建環(huán)保模范城,共享綠色新重慶”,市政府強(qiáng)力推進(jìn)城市生活污水處理、生活垃圾處理設(shè)施建設(shè)改造工作.為此,某化工廠在一期工程完成后購買了4臺甲型和5臺乙型污水處理設(shè)備,共花費(fèi)資金102萬元,且每臺乙型設(shè)備的價格比每臺甲型設(shè)備價格少3萬元.已知每臺甲型設(shè)備每月能處理污水240噸,每臺乙型設(shè)備每月能處理污水180噸.今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩型設(shè)備共12臺用于二期工程的污水處理,預(yù)算本次購買資金不超過129萬元,預(yù)計二期工程完成后每月將產(chǎn)生不少于2220噸污水.

          1)請你計算每臺甲型設(shè)備和每臺乙型設(shè)備的價格各是多少萬元?

          2)請你求出用于二期工程的污水處理設(shè)備的所有購買方案;

          3)請你說明在(2)的所有方案中,哪種購買方案的總花費(fèi)最少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PA,PB分別與O相切于A,B兩點(diǎn),ACB=60°.

          (1)求P的度數(shù);

          (2)若O的半徑長為4cm,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

          (1)求△AHO的周長;

          (2)求該反比例函數(shù)和一次函數(shù)的解析式.

          【答案】(1)△AHO的周長為12(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

          【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;

          2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

          試題解析:(1)由OH=3tan∠AOH=,得

          AH=4.即A-4,3).

          由勾股定理,得

          AO==5,

          △AHO的周長=AO+AH+OH=3+4+5=12

          2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

          k=-4×3=-12,

          反比例函數(shù)的解析式為y=;

          當(dāng)y=-2時,-2=,解得x=6,即B6,-2).

          A、B點(diǎn)坐標(biāo)代入y=ax+b,得

          ,

          解得

          一次函數(shù)的解析式為y=-x+1

          考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

          型】解答
          結(jié)束】
          21

          【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過點(diǎn)C作CE⊥DB交DB的延長線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

          (1)求證:CF為⊙O的切線;

          (2)填空:當(dāng)∠CAB的度數(shù)為________時,四邊形ACFD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB⊙O的弦,OP⊥OAAB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB

          1)求證:BC⊙O的切線;

          2)若⊙O的半徑為,OP=1,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若△BCE的面積為4,則k的值是( 。

          A. 2 B. 4 C. 6 D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知為正方形的中心,分別延長到點(diǎn), 到點(diǎn),使, ,連結(jié),將△繞點(diǎn)逆時針旋轉(zhuǎn)角得到△(如圖2).連結(jié)、

          (Ⅰ)探究的數(shù)量關(guān)系,并給予證明;

          (Ⅱ)當(dāng), 時,求:

          的度數(shù);

          的長度.

          查看答案和解析>>

          同步練習(xí)冊答案