日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC的面積是12,點D,E,F(xiàn),G分別是BC,AD,BE,CE的中點,則△AFG的面積是(
          A.4.5
          B.5
          C.5.5
          D.6

          【答案】A
          【解析】解:∵點D,E,F(xiàn),G分別是BC,AD,BE,CE的中點, ∴AD是△ABC的中線,BE是△ABD的中線,CF是△ACD的中線,AF是△ABE的中線,AG是△ACE的中線,
          ∴△AEF的面積= ×△ABE的面積= ×△ABD的面積= ×△ABC的面積= ,
          同理可得△AEG的面積= ,
          △BCE的面積= ×△ABC的面積=6,
          又∵FG是△BCE的中位線,
          ∴△EFG的面積= ×△BCE的面積= ,
          ∴△AFG的面積是 ×3= ,
          故選:A.
          【考點精析】利用三角形的面積和三角形中位線定理對題目進(jìn)行判斷即可得到答案,需要熟知三角形的面積=1/2×底×高;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某課題研究小組就圖形面積問題進(jìn)行專題研究,他們發(fā)現(xiàn)如下結(jié)論: ①有一條邊對應(yīng)相等的兩個三角形面積之比等于這條邊上的對應(yīng)高之比;
          ②有一個角對應(yīng)相等的兩個三角形面積之比等于夾這個角的兩邊乘積之比;

          現(xiàn)請你繼續(xù)對下面問題進(jìn)行探究,探究過程可直接應(yīng)用上述結(jié)論.(S表示面積)

          問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1 , P2三等分邊AB,R1 , R2三等分邊AC.經(jīng)探究知 = SABC , 請證明.
          問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1 , Q2三等分邊DC.請?zhí)骄? 與S四邊形ABCD之間的數(shù)量關(guān)系.
          問題3:如圖3,P1 , P2 , P3 , P4五等分邊AB,Q1 , Q2 , Q3 , Q4五等分邊DC.若S四邊形ABCD=1,求
          問題4:如圖4,P1 , P2 , P3四等分邊AB,Q1 , Q2 , Q3四等分邊DC,P1Q1 , P2Q2 , P3Q3將四邊形ABCD分成四個部分,面積分別為S1 , S2 , S3 , S4 . 請直接寫出含有S1 , S2 , S3 , S4的一個等式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,把矩形OABC沿對角線AC所在直線折疊,點B落在點D處,DC與y軸相交于點E,矩形OABC的邊OC,OA的長是關(guān)于x的一元二次方程x2﹣12x+32=0的兩個根,且OA>OC.

          (1)求線段OA,OC的長;
          (2)求證:△ADE≌△COE,并求出線段OE的長;
          (3)直接寫出點D的坐標(biāo);
          (4)若F是直線AC上一個動點,在坐標(biāo)平面內(nèi)是否存在點P,使以點E,C,P,F(xiàn)為頂點的四邊形是菱形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為 的中點,作DE⊥AC,交AB的延長線于點F,連接DA.
          (1)求證:EF為半圓O的切線;
          (2)若DA=DF=6 ,求陰影區(qū)域的面積.(結(jié)果保留根號和π)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了維護(hù)國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達(dá)B處,此時測得燈塔P在北偏東30°方向上.

          (1)求∠APB的度數(shù);
          (2)已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校召集留守兒童過端午節(jié),桌上擺有甲、乙兩盤粽子,每盤中盛有白粽2個,豆沙粽1個,肉粽1個(粽子外觀完全一樣).
          (1)小明從甲盤中任取一個粽子,取到豆沙粽的概率是
          (2)小明在甲盤和乙盤中先后各取了一個粽子,請用樹狀圖或列表法求小明恰好取到兩個白粽子的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如表是一個4×4(4行4列共16個“數(shù)”組成)的奇妙方陣,從這個方陣中選四個“數(shù)”,而且這四個“數(shù)”中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是(

          30

          2 sin60°

          22

          ﹣3

          ﹣2

          sin45°

          0

          |﹣5|

          6

          23

          1

          4

          1


          A.5
          B.6
          C.7
          D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著互聯(lián)網(wǎng)、移動終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機(jī)構(gòu)針對“您如何看待數(shù)字化閱讀”問題進(jìn)行了隨機(jī)問卷調(diào)查(如圖1),并將調(diào)查結(jié)果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整).
          請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:



          (1)求出本次接受調(diào)查的總?cè)藬?shù),并將條形
          統(tǒng)計圖補充完整;
          (2)表示觀點B的扇形的圓心角度數(shù)為度;
          (3)若嘉興市人口總數(shù)約為270萬,請根據(jù)圖中信息,估計湖州市民認(rèn)同觀點D的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其日均課外閱讀時間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

          t

          [0,15)

          [15,30)

          [30,45)

          [45,60)

          [60,75)

          [75,90)

          男同學(xué)人數(shù)

          7

          11

          15

          12

          2

          1

          女同學(xué)人數(shù)

          8

          9

          17

          13

          3

          2

          若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”.
          (1)將頻率視為概率,估計該校4000名學(xué)生中“讀書迷”有多少人?
          (2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動. (i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;
          (ii)記抽取的“讀書迷”中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案