日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,CD=CA,∠1=∠2,EC=BC,求證:△ABC≌△DEC.
          由∠1=∠2可得∠BCA=∠ECD,再結(jié)合CD=CA,EC=BC,即可根據(jù)“SAS”證得結(jié)論.

          試題分析:∵∠1=∠2
          ∴∠1+∠ECA=∠2+∠ECA
          即∠BCA=∠ECD
          又∵CD=CA,EC=BC
          ∴△ABC≌△DEC.
          點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握全等三角形的判定方法,即可完成.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          探究:如圖,在Rt△POQ中OP=OQ=4,將一把三角尺的直角頂點(diǎn)放在PQ中點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B,連接AB,則△AOB周長(zhǎng)的最小值是      

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          在 △ABC中,AB=AC,點(diǎn)D為BC邊的中點(diǎn),∠BAD=20°,則∠C的度數(shù)________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,將一副三角板的直角頂點(diǎn)重合,擺放在桌面上。若∠AOD=140°,則∠BOC=     0
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E。

          (1)求證:△ABD∽△CED;
          (2)若AB=6,AD=2CD,求BE的長(zhǎng)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,在等邊三角形ABC中,D為BC邊的中點(diǎn),AE=AD,則∠EDC的度數(shù)(      )
          A.25°B.15° C.45°D.75°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,若AB=AD,BC=CD,那么判斷△ABC≌△ADC的依據(jù)是
          A.SASB.HLC.ASAD.SSS

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,已知∠AOB=80°,在射線OA、OB上分別取OA= OB1,連結(jié)AB1,在AB1、B1B上分別取點(diǎn)A1、B2,使A1 B1= B1 B2 ,連結(jié)A1 B…,按此規(guī)律下去,記∠A1 B1 B21 ,∠A2B2B3 2, …,∠AnBnBn+1 n ,則θ2=          ;θ2013=                .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,在△ABC中,AD是高,AE是角平分線,∠C∠B, 則下列能正確表示∠EAD ∠B、∠C之間的關(guān)系的是( 。

          A、∠EAD=(∠C +∠B)
           B、∠EAD=(∠C-∠B)        
          C、∠EAD=90°-(∠C +∠B)   
          D、∠EAD=180°-(∠C +∠B)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案